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Abstract: The design of high quality factor (Q) optical cavities in
two dimensional photonic crystal (PC) slab waveguides based upon a
momentum space picture is presented. The results of a symmetry anal-
ysis of defect modes in hexagonal and square host photonic lattices
are used to determine cavity geometries that produce modes which by
their very symmetry reduce the vertical radiation loss from the PC
slab. Further improvements in the ) are achieved through tailoring
of the defect geometry in Fourier space to limit coupling between the
dominant momentum components of a given defect mode and those
momentum components which are either not reflected by the PC mir-
ror or which lie within the radiation cone of the cladding surrounding
the PC slab. Numerical investigations using the finite-difference time-
domain (FDTD) method predict that radiation losses can be signifi-
cantly suppressed through these methods, culminating with a graded
square lattice design whose total QQ approaches 10° with a mode volume
of approximately 0.25 cubic half-wavelengths in vacuum.
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1 Introduction

The study of high quality factor (@) optical microcavities is of significance to both
lightwave technology and studies in quantum optics[1]. In the former case, such cavities
are integral to the development of low threshold microlasers [2, 3], nonlinear optical
elements [4], and narrow linewidth, wavelength selective filters [5, 6, 7]. In the latter area,
a microcavity with suitable properties will give rise to a host of possible experiments
for studying coherent electron-photon interactions [8] and their potential applications
in quantum information processing. Optical cavities formed by localized defects in a
periodic dielectric structure, or photonic crystal (PC), offer an appealing architecture for
such work. Planar two-dimensional (2D) PC slab waveguides (WGs) have in particular
been the subject of much research activity in recent years [9, 10] owing to the maturity
of current planar fabrication technology. This has been demonstrated in the ability
to integrate PC microresonators with WGs [6, 11, 12], and in defect cavity lasers with
prescribed emission properties [13] and modal volumes approaching the theoretical limit
of a cubic half-wavelength.

While the PC optical microcavities studied in [14] had very small mode volumes
and loss properties sufficient to sustain lasing, the measured @ values were still less
than 1500. In particular, the radiation losses were predominantly out-of-plane, while
the in-plane losses were in comparison small [15]. Although refinements in design [16]
and fabrication [17] have since increased the total measured ) to as high as 2800, most
of the potential applications previously mentioned require ) values on the order of 10*
or 10° in order for PC slab WG microcavities to show marked improvement from what
is available through non-PC designs.

The limitations on @ stem from a number of possible factors, including intrinsic
material absorption, etch-induced surface roughness and surface-state absorption, and
other fabrication irregularities that prevent ideal replication of a given design. These
issues aside, the fundamental design of these cavities has room for improvement, and
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Fig. 1. 2D hexagonal PC slab waveguide structure and cladding light cone.

as such, the focus of this paper primarily lies here. Our main objective is to consider
simple design rules that can be used to significantly reduce the vertical losses from such
structures, while maintaining or even improving upon the in-plane losses. In Section 2,
we describe a simple picture which illustrates that the vertical radiation loss of a mode
is characterized by the presence of momentum components within the light cone of the
cladding of the host slab WG. We then consider (Section 3) the use of symmetry to
eliminate in-plane momentum components (k) at k; =0 (DC), thereby reducing the
vertical loss in the structure. Drawing heavily from [13, 18], we summarize the different
defect modes available in hexagonal and square lattice PC’s, and proceed to choose
target symmetries for modes in these lattices based upon the constraints they impose
on the dominant field components of the modes. In Section 4, we propose simple defect
geometries that support such modes and present the results of three dimensional (3D)
finite-difference time-domain (FDTD) calculations of their relevant properties. Finally
(Section 5), we consider further improvements in the designs based on a Fourier space
tailoring of the defect geometries that reduces coupling of the mode’s dominant Fourier
components to components that radiate. The results of FDTD simulations of these
improved designs in a square lattice are presented, and show that a modal Q-factor
approaching 10° can be achieved by a careful consideration of the mode and defect
geometry in Fourier space.

2 Momentum Space Consideration of Vertical Radiation Loss

The optical cavities studied here are comprised of defects situated in 2D PC slab WGs
(Figure 1). As a result, the in-plane confinement of the defect mode is governed by
the Distributed Bragg Reflection (DBR) of the surrounding photonic lattice. Leakage
of light in the plane of the PC slab WG from the cavity is thus determined by the
number of periods of the host lattice surrounding the defect and the width and angular
extent of the in-plane guided mode bandgap. The vertical confinement, on the other
hand, is due to standard waveguiding by total internal reflection. Vertical radiation loss
occurs when the magnitude of the in-plane momentum component, k, , is inappropriate
to support guiding. More concretely, we note that the energy-momentum dispersion
relationship for a homogenous dielectric cladding (refractive index n) of the PC slab WG
is (nw/c)? = k% + k2, where w is the angular frequency, k, is the momentum normal to
the slab, and c is the speed of light. For an air clad PC WG as studied here, k2 = (w/c)?
defines a cone in (kg, ky, w) space, commonly referred to as the “light cone” (Figure 1).
Modes that radiate vertically will have small in-plane momentum components that
lie within the light cone of the cladding. This simple rule serves as our fundamental
guideline in designing cavities that limit vertical radiation loss. In particular, we seek
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out structures that support resonant modes whose in-plane momentum components are
primarily situated outside of the cladding light cone.

Before discussing methods to improve the vertical loss properties of PC defect cavi-
ties, it is instructive to consider the characteristics of the previously studied[15] dipole-
like defect modes in a hexagonal lattice PC. Consider the z-dipole donor mode produced
by a symmetric defect consisting of the removal of a single air hole from a hexagonal lat-
tice of air holes in a 2D slab WG[15] (illustrated in cross-section in Figure 1). Following
the symmetry analysis presented in reference [13], we see that this mode is composed
of dominant Fourier components directed along +{kx,,kx,,Kkx, }, where the kx direc-
tions are shown in the hexagonal PC reciprocal space lattice of Figure 2(a). The 2D
spatial Fourier Transform (FT) of the z-dipole field component E, at the middle of
the PC slab WG is given in Figure 3(a). It shows the E-field to be primarily composed
of momentum components located about the X points, with +ky, as the strongest
components. Note that the field has a significant number of momentum components
lying within the light cone, the boundary of which is shown in Figure 3(a) as a dashed
white circle. These low momentum components radiate and are the cause of the mode’s
relatively low effective vertical @Q-factor (@ = 1000).
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(a) Hexagonal Lattice. (b) Square Lattice.

Fig. 2. Real and reciprocal space lattices of (a) a 2D hexagonal lattice, and (b) a 2D
square lattice. For the hexagonal lattice: |ai| = |as| = a, |G1| = |G2| = 47/+/3a,
kx| = 27/V3a, |kj| = 47/3a. For the square lattice: |aj| = |az| = a, |G1| =
Ga| = 2n/a, kx| =7/a, [kn| = v27/a.

3 Symmetry Analysis of Defect Modes in Hexagonal and Square Lattices

There are a number of ways to limit the presence of the small in-plane momentum
components in the localized resonant modes of PC slab WG defect cavities. For example,
the geometry of the defect and the surrounding holes can be tailored to reduce the
magnitude of these components, as was done in [16], where the authors report a predicted
Q@ of 30,000. One particularly appealing way to limit the presence of small in-plane
momentum components is to use symmetry to enforce specific boundary conditions on
the Fourier space representation of the mode[19]. A defect will support one or more
resonant modes with symmetries that are compatible with the nature of the defect and
the surrounding PC. Of particular interest are modes whose symmetry is odd about
mirror planes normal to the dominant Fourier components of the mode. In the context
of our symmetry analysis (discussed below), the fields of the approximate TE-like modes
have in-plane electric field polarization normal to the direction of their dominant Fourier
components. Our choice of symmetry minimizes vertical radiation from in-plane electric
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Fig. 3. Spatial FT of z-dipole donor mode in a hexagonal lattice (r/a = 0.30) with
a central missing air hole. (a) in 2D, (b) along the k; direction with k; = 0.

field polarizations parallel to those of the approximate modal fields. In Fourier space this
is equivalent to eliminating these in-plane electric field polarizations at k; = 0 (DC).
This elimination of DC momentum components is the first step in reducing vertical
radiation loss, and serves as our fundamental criterion for choosing the desired symmetry
for our defect mode.

The defect modes of a PC cavity are generally classified into donor and acceptor type
modes [20], based upon whether the defect creates modes from the conduction band-
edge (donor modes) or valence band-edge (acceptor modes). For the hexagonal lattice,
whose real and reciprocal space depictions are given in Figure 2(a), the valence band-
edge is at the J-point and the conduction band-edge is at the X-point (Figure 4(a)),
while the square lattice of Figure 2(b) has its valence band-edge at the M-point and
conduction band-edge at the X-point (Figure 4(b)). The dominant Fourier components
and symmetry of a defect mode are determined by the type of mode (donor or acceptor)
under consideration, the symmetry of the surrounding PC lattice, and the point group
symmetry of the defect. The use of such an analysis to produce approximate forms for
the modes in hexagonal and square lattice PC defect cavities is the focus of other recent
articles [13, 18], and as such, we primarily incorporate the results of these works and
describe their implications towards the design of high-Q defect resonators. The course of
study is the following: we use the results of [13] and [18] to determine the symmetry and
dominant Fourier components for the available donor and acceptor type modes formed
at different high symmetry points within hexagonal and square lattice PC’s. Candidate
modes for high-@) resonators are then chosen from these sets of available modes based
upon the criteria placed on the mode’s momentum components as described above.
Within the mirror plane of the slab WG (coordinates r ) the fundamental even modes
are described by the field components E;, E,, and B,. Since the magnetic field is
exactly scalar within this mirror plane, the criterion reduces to looking for modes in
which the magnetic field pattern is spatially even in the directions of its dominant
Fourier components. This is equivalent to having the in-plane electric field components
spatially odd in these directions.
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Fig. 4. Fundamental TE-like (even) guided mode bandstructure for hexagonal and
square lattices, calculated using a 2D plane-wave expansion method with an effective
index for the vertical guiding: (a) hexagonal lattice with r/a = 0.36, ngap = neg =
2.65, (b) square lattice with r/a = 0.40, ngap = Neg = 2.65.

3.1 Hezxagonal Lattice

For a hexagonal lattice, the high symmetry points about which a defect may be formed
are points a (Cg, symmetry), b (Co, symmetry), and ¢ (Csy,0, symmetry) shown in
Figure 2(a). In this paper we consider donor and acceptor modes formed only at points
a and b as from the analysis presented in reference [18] those centered at point ¢ do
not contribute modes with the requisite symmetry and dominant Fourier components.
We also examine reduced symmetry modes formed at point a where the reduction of
symmetry from Cg, to Cs, is accomplished by choosing a defect that breaks the sym-
metry of the lattice and is compatible with Cs,. Based upon the analysis of [13, 18], we
create Table 1 for donor modes and Table 2 for acceptor modes. These tables provide
the labeling scheme for the Cg, and Cs, modes, the dominant Fourier components of
the modes, and their transformation properties about the available mirror planes (the
mirror plane properties are represented by their character values[21]).

Donor modes of Cg,, symmetry, formed at point a in the lattice, have their dominant
Fourier components in the +{kx,,kx,,kx,} directions, and we thus require that o4 =
—1, where the o4, are the mirror planes labeled in Figure 2(a). However, o4 # —1 for
the modes listed in Table 1. Reducing the symmetry of the mode to Cb, (through a
modified defect at point a or re-centering to point b) results in modes with dominant
Fourier components that are not orthogonal to the available mirror planes, or as in the

case of the B%‘lﬂ mode, incorrect spatial symmetry.

Out of the Cp, acceptor modes in Table 2, the Bi’gl mode satisfies the symmetry
criteria. The Biijl mode produced at position b does not quite satisfy our criteria, as
two of the three pairs of dominant Fourier components (+{k, , kj, }) are not orthogonal
to the mirror planes; however, distortions of the lattice that preferentially select for the
+k;, Fourier components over £k; and £k;, can be made so that the symmetry
condition is satisfied. Such lattice distortions are addressed in a future article. As a

reference, the approximate form for the BZ’,‘TI mode is listed below [13]:
2
Bi’gl = 2<cos(k(]1 -19) + cos(ky, -re) + cos(ky, - r‘i)), (1)
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where r denotes in-plane coordinates referenced to point a.

Table 1. Symmetry classification and dominant Fourier components
for the B-field of conduction band donor modes in a hexagonal lattice.

e | | e | 0| S| Ga0)”
(0,0) B(fg’?l t{kx, kyx, kx| (£.-) | BE | (- +)
(0,0) | BEY, | £{kx, ky, kx,} | (0,00 | B | (=, +4)
(0,00 | B, | #{kx, kx,} (0,00 | BE' | (+.-)
(a/2,0) | N/A? +{kx, kx,} N/A B%" | (+,4)
(a/2,0) | N/A | +{kx,.kx,} N/A | BY | (=)
(a/2,0) | N/A +{kx, } N/A | BR! | (-4

@ Not Applicable. Modes centered at point b are of Cs, symmetry.
b Character values.

Table 2. Symmetry classification and dominant Fourier components
for the B-field of valence band acceptor modes in a hexagonal lattice.

defect Céo Fourier Cyy

center modes components modes

(0,0) Bigl ks ki, ki, } (=) ngl

(
(070) B%’;l i{kJung.kas} (_7+) B%’;ﬂ (+7 -

(

(

(CL/Z, O) N/A i{kh ) kJ37 kJs} N/A Bl;l’;ll
(a/2a 0) N/A i{kJ1 ’ kJ37 kJs} N/A B%ZI
3.2  Square Lattice

The square lattice of air holes in a dielectric slab, whose real and reciprocal space
representations are shown in Figure 2(b), and whose TE-mode bandstructure is depicted
in Figure 4(b), also provides a photonic lattice from which low-loss defect modes can
be formed. Defects in a square lattice may be centered at the Cy, symmetry points d
and f, or the Cy, symmetry point e. Again, following the analysis of [18], we produce
Tables 3 and 4 for the square lattice defect modes.

Based on their properties under mirror reflection, the BQ;l, Bgzl, and Bi’gl donor
modes all meet the symmetry condition we have placed on the modes. By suitable
modification of the defect geometry, the symmetry of modes formed at points d and
f can be reduced to Cyy 4, or Cay ,, where the subscript o, denotes symmetry with
respect to the (0,,0,) mirror planes and the subscript o4 refers to the (o,/,0,/) mirror
planes (Figure 2(b)). The modes at f continue to satisfy the symmetry criteria under
C2y,0,, but no longer do so under Cy, ,, as the o4 mirror planes are not orthogonal to
the modes’ dominant Fourier components.

The acceptor states formed from the valence band edge at the M-point are analyzed
in a similar fashion, and in this case, the modes at points d and f are candidates. The
reduced symmetry Ca, ,, modes at points d and f are ruled out, while the C%, , modes
at these two high symmetry points remain on the list. As a reference, the approximate
forms for the candidate donor and acceptor modes are given in Table 5 below.
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Table 3. Symmetry classification and dominant Fourier components for the B-field
of conduction band donor modes in a square lattice.

defect Cluy Fourier Cov,o, Cav,0,

center modes comp. (04,04) | modes | (04,0,) | modes | (0q,04)
(0,0 | BgY | #Hkx} | 0,0 | B | (-4 | BE" | (=)
(0,0 | Bz | #Hkwe} | 0,0) | B | (+,0) | By | (+.-)
(a/2,0/2) | B | ko kx| (=) | B | (o) [ BE | (=)
(a/2,a/2) | BLY' | Hkxoka} | (=4) | BE? | () | B | (- -)
(0,a/2) | N/A | *{kx,} | N/A | B | (-,-) | NJA | N/A
(0,a/2) | N/A +{kx,} N/A | B | (+,-) | N/A N/A

Table 4. Symmetry classification and dominant Fourier components for the B-field
of valence band acceptor modes in a square lattice.

defect Cuy F . CQU’G-,U C2'U’o'd
center modes ourer (04,00) | modes | (0g,0y) | modes | (0u,0,)
comp.
d,a d,a d,a
(070) BAgl :t{leﬂkMz} (_7_) BA21 (_7_) BA’21 (_7_)
(a/2,0/2) | Bt | #{kay kap} | () | B | (1,4) | B | (=)

(0,a/2) N/A | {ku kst | N/A | BE™ | (= +) | N/A N/A

Table 5. Candidate donor and acceptor modes in a square lattice.

‘ Donor Modes ‘ Acceptor Modes ‘

Bz’zl %(cos(kx, - rﬁ) + cos(kx, - rﬁ)) Bi‘gl = 2(cos(kag, - 14) + cos(kay, - %))
Bg;l 2(cos(kx, - t)) — cos(kx, - 1)) Bg;l = 2(cos(kar, - )) — cos(kay, - 1))

BZ(QH z‘(cos(kx1 ri))

4 Initial FDTD Simulation Results

The symmetry analysis presented in the previous section determined the modes satisfy-
ing our symmetry criteria, chosen to reduce vertical radiation losses from the PC slab
WG. For a hexagonal lattice, we singled out the acceptor mode of equation 1, while for
the square lattice, a number of options were available, as summarized in Table 5. We
begin the 3D FDTD analysis of high-@) PC resonant cavities by choosing particular de-
fects in the hexagonal and square lattices that will support one of these modes. Results
from the FDTD analysis will provide a measure of the benefits obtained in using modes
of such symmetries, and will also give an indication of what further improvements are
needed. This will lead naturally to the Fourier space tailoring of the lattice discussed in
Section 5.

The FDTD calculations presented in this section were performed on a mesh with 20
points per lattice spacing (greater than 70 points per free space wavelength or 20 points
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per wavelength in the dielectric). Cavity modes were excited by an initial field (B,) with
a localized Gaussian profile, and even modes of the slab WG were preferentially selected
by using an even mirror symmetry condition (oj, = 1) in the middle of the slab. In order
to maintain a single vertical mode of the PC slab waveguide (within the frequency band
of interest), we choose a normalized slab thickness d/a = 0.75 in this section. Where
appropriate, the mirror planes (o,,0,) were used to filter out cavity modes according
to their projection on to the irreducible representations (IRREPs) of Cy,,,. Mur’s
absorbing boundary conditions were used to terminate the FDTD simulation domain in
all other directions. @) values were calculated by determining the power absorbed in the
boundaries (Pgs) and the stored energy in the mode (U), and taking Q@ = woU/Paps,
where wy was the angular frequency of the mode. By distinguishing between power flow
to vertical and in-plane boundaries, effective @ values Q1 and Q) were calculated. It
should be noted that a number of other methods were also used to estimate the @Q
values, including the modal energy decay rate and the radiated power calculated from
the near-field momentum components lying within the cladding light cone, all resulting
in consistent values. The effective volume of the cavity modes, V.g in the tables below,
is calculated here using the peak in the electric field energy density and is given in units
of cubic half-wavelengths in vacuum|[15]. Further details on the simulation methods can
be found in previous articles [13, 15, 16].

4.1 Hezxagonal Lattice

The BZ’? mode, our candidate mode for study, is formed by enlarging holes in a manner
consistent with the Cg, symmetry of the lattice, so that an acceptor mode is formed.
We choose the defect geometry shown in Table 6, where the central hole (about point
a) is enlarged from radius r to r’. The defect is surrounded by a total of 8 periods of
the hexagonal lattice in the Z-direction and 12 periods in the g-direction. The magnetic
field amplitude and momentum space electric field components E, and E, of mode
Bi’,:fl are given in Table 6 for two different pairs of values (r,7"). The dominant Fourier
components are seen to be +{kj; Kk, k. }, as predicted by the symmetry analysis.
Examining ]:330 and Ey, it is also clear that, although the power within the light cone
has been reduced in comparison to the z-dipole donor mode, it is still significant. This
fact is evidenced in @, which, at 4,900 for r/a = 0.35 and r'/a = 0.45, is larger
than that obtained for the xz-dipole mode. By reducing the frequency, and consequently
the radius of the light cone, the PC cavity with r/a = 0.30 and r'/a = 0.45 has an
improved vertical @ of 8,800 (although its in-plane @ has degraded due to a reduction
in the in-plane bandgap for smaller lattice hole radii).

One complication in the hexagonal lattice (as opposed to the square lattice designs
studied below) is the number of dominant Fourier components that must be accounted
for when trying to maximize Q). As we alluded to earlier, modifications to the host lattice
itself, rather than the defect geometry alone, provide an interesting method to reduce
the number of components and further improve the @ of the structure. The detailed
discussion of these ideas is left to an upcoming paper. From this point on, we will focus
on square lattice designs, but it is important to note that many of the ideas described
below are equally applicable to hexagonal lattice structures.

4.2 Square Lattice

We choose the B;’g ! mode as our candidate for study. This mode, centered in the dielec-
tric at point e in the lattice, is appealing in that it has Fourier components primarily
situated at £kx,, while the other modes of correct symmetry have a larger number of
Fourier components. This simplifies the design considerations of Section 5. To create
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Table 6. Characteristics of the B%?! resonant mode in a hexagonal lattice (images

A//
are for a PC cavity with r/a = 0.325, r'/a =0.45, d/a = 0.75, and ng,p = 3.4).
Geometry IE,|
4w
O O 1.
0 | =0
O™ ® |-
@) -5
S
¢ 10]
%
@?@ g kx (a=1)
r/a rl/a QH QL Qtot Ve
0.35 0.45 34,100 4,900 4,300 0.11
0.30 0.45 5,300 8,800 3,300 0.17

the mode, we consider the structure depicted in Table 7. Defining point e as the origin,
(0,0), we see that the structure consists of a standard square lattice of air holes in which
the two holes centered at (0, +a/2) are decreased in size so as to create a donor mode of
Ag symmetry. In the FDTD simulations, the structure consists of 12 rows and 8 columns
of air holes surrounding the defect holes.

Starting with r/a = 0.30, r'/a = 0.28, and d/a = 0.75, we produce a mode with
normalized frequency w, = a/X\, = 0.264. The magnetic field amplitude and 2D spatial
FTs (Ew and Ey) of the mode are given in Table 7. As the magnitude of Ey is negligible
in comparison to that of Em, the mode is predominantly made up of components centered
at tkx,, as predicted. The effective vertical @) of this mode is approximately 54,000,
easily exceeding the values obtained in [13] for a mode of even symmetry. The small
Q) (17,400) is a result of the weak defect perturbation and extended nature of the
cavity mode (Vog = 0.43). Improving the localization of the mode by lowering '/a
of the defect to 0.25 improves @ to a value of 60,000 and lowers Veg by a factor
of almost two. Surprisingly, @, has also increased from 54,000 to 69,000 despite the
stronger localization of the mode and its expected broadening in Fourier space. This
rather counter-intuitive result indicates that a more detailed study of the effects of the
defect geometry on cavity loss is required. This is the focus of the following section.

5 Momentum Space Design of the Defect Geometry in a Square Lattice

The results given thus far indicate that improving the loss properties of the defect mode
resonators requires isolation of the mode’s momentum components to regions outside
the light cone to maintain a high @, and to those regions for which the in-plane
bandgap is substantial for a high Q. To determine how to tailor the defect geometries
to accomplish these goals, we consider a simple model to illustrate the couplings induced
in Fourier space between the dominant momentum components of a given defect mode
and those modes which radiate. We employ a two-step process where in the first step, the
approximate form of the defect mode is taken based on symmetry arguments, as outlined
in Section 3, with the allowance for finite k-space bandwidths in the dominant Fourier
components due to the localization of the defect mode. We then consider couplings
of this approximate symmetry mode to other modes of the PC slab WG through the
dielectric perturbation An(r), where n = 1/e is the inverse of the dielectric profile of
the lattice. The most important mode couplings from the perspective of increasing the
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Table 7. Characteristics of the Bzgl resonant mode in a square lattice (images are

for a PC cavity with r/a = 0.30, 7’'/a = 0.28, d/a = 0.75, and ngpap, = 3.4).

Geometry |B| |E.| |Ey|
O® O g
;8888'?'!'?‘?:
O @ O | jgaaes
oe )0 0000
PN )00 0OTTRY
O O O e
1000001
YOO OC X@X¢
O G0 |
10660000¢
r/a r'/a Wn, Qrot Vesr
0.30 0.28 0.265 17,400 54,000 13,000 0.43
0.30 0.25 0.262 60,100 69,200 32,000 0.22

@ are those between the dominant Fourier components and “leaky cavity modes”. The
leaky cavity modes consist of vertical radiation modes and guided modes of the PC slab
WG which are not reflected by the PC and thus leak in-plane. An induces the change
dH(r) in the defect mode, and this change is written as a superposition over the set
of nearly (frequency) degenerate guided and radiation modes of the PC slab WG. The
coupling amplitude between the symmetry mode composed of the dominant Fourier
components, H%(r), and a leaky cavity mode, H!™(r), of the unperturbed PC slab is
given by the following matrix element:

/d3r (Hffm(r))*(vX(An(r)vXﬂg(r))> N/?;Tk)i (Eif;”>*<[&7*(|kl|2§io)}
o [(ke) 5 (ko B2,) | + [ () = (kyég,oﬂ) @)

where * denotes convolution. In converting from the real space integral to momentum
space, we have neglected the variation of n(r) and An(r) in the Z-direction, so that
Hi(r) ~ B, ,%(r,) (TE-like mode). From this equation, it is clear that the FT of the
dielectric perturbation, Avn(k 1), is the key quantity that couples Fourier components
between the basis modes of the system. By tailoring this quantity appropriately, we can
thus limit couplings that lead to in-plane and vertical leakage. Such a tailoring can be
implemented for both the square and hexagonal lattice designs; however, due to the
relative simplicity of the Fourier space representation of the Bi"gl defect mode in the
square lattice, we focus on it in this paper. The implementation of Fourier space design
rules in standard and distorted hexagonal lattices is discussed in future work.

Our candidate mode, B;’gl, has dominant in-plane Fourier components at +kyx,.
We must therefore modify the defect so that Avn does not couple the £kx, momentum
components to those regions in k-space which are “leaky”. In order to reduce radiation
normal to the PC slab through coupling to the light cone, the amplitude of An in the
neighborhood of k, = £m/a should be minimized. In addition, for the square lattice
designs investigated here the bandgap between the conduction band-edge at the X-
point and the valence band-edge at the M-point is at best very narrow, consequently,
we look to reduce coupling between neighborhoods surrounding the X- and M-points.
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Fig. 5. Illustration showing the mode coupling for the BZ’;“ mode in k-space through

the &7 perturbation.

This implies that it will also be necessary to reduce the amplitude of &] in the region
about k, = +7/a.

The crux of the argument described above is depicted in Figure 5, where lossy
couplings are illustrated for the upper region of k-space (the negative k, region will
behave identically in this case). Here we have assumed that the defect mode frequency
lies below the conduction band-edge at the X-point but slightly within the valence band
near the M-point, resulting in an annular region of k-space about the M-point which
is strongly coupled to. With reference to this simple schematic, the Fourier components
of An that lead to radiation losses from the defect cavity are approximately:

Kn(w < (ke + D), [y + [k, || < (ke + Ay)) — coupling to light cone,

— (3)
An(|kr + kx| S Az, |ky| S Ay) = coupling to leaky M-point.

where k. is the radius of the light cone, and A, and A, are the widths of the dominant
Fourier peaks in the EI— and Ey—directions, respectively.

Before attempting any design modifications, we first consider the simple defect ge-
ometry studied in Section 4, where the holes located at (0,+a/2) were reduced from
the standard hole radius r to a radius 7’. The perturbation An is given by the difference
in n with and without the defect holes, and thus simply consists of a pair of annuli,
each of width (r —r’), centered at (0,+a/2). The 2D spatial FT of this function can be
obtained analytically[22], and is separable into the form

Bilcs) = Flhuirr) cos(“42). (4)

where F(k,;r,r'") is a function of the magnitude of the in-plane momentum, with r
and 7’ as parameters. This function, along with one-dimensional (1D) slices along the
k. and k, axes, is shown in figure 6 (the figure shown is actually the direct FT of the
structure used in FDTD calculations, to take into account any staircasing effects in the
rendering of the holes; however, the difference between it and the analytic function are
insignificant.). We notice, as is clear from examining eq. (4), that An =0 at k, = £7/a.
Our choice of defect was thus a fortuitous one, as the zero amplitude of &7 at the X
points eliminated coupling between the dominant Fourier components of the Bi{g ! mode
and DC. Of course, a localized defect mode has a finite bandwidth in Fourier space about
its dominant momentum components, and the light cone encompassing the radiation
modes is of finite radius as well. As a result it is desirable to minimize the Fourier
components of the dielectric perturbation over an extended region about k, = +n/a.
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Fig. 6. Kn(kl) for dielectric structure of Table 7.

Note that &7 for the hexagonal lattice design of the previous section does not have zero
amplitude at any of the k;, and thus the @, values are much smaller than those of the
square lattice. To increase ), in the hexagonal lattice, future designs must therefore
tailor the lattice in a way so that this amplitude is significantly reduced.

It is also necessary to modify the dielectric to improve ). The most straightforward
way to immediately do so is to increase the r/a of the host PC, as that will provide a
bandgap for an increased range of momentum values. This also tends to decrease @ , as
the increased r/a will produce a mode of higher frequency, resulting in a cladding light
cone of increased radius encompassing a larger range of momentum values. Fortunately,
this does not necessarily have to hold for a general defect geometry. In particular, the
hole radius can be kept relatively small in the region where the mode is primarily located,
but can be graded outside this region to increase the in-plane reflectivity. The choice
of grading can be determined by considering the need to limit the in-plane momentum
components of the mode to regions in which the bandgap is substantial (Note that for
the simple two-hole design considered in Section 4, &7 is quite large in this region of
momentum space about k, = £m/a). The benefit of this approach is that it does not
necessarily result in increased vertical radiation loss, thus allowing for both a large Q|
and Q] .
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(a) Graded PC lattice. (top right) r/a along (b) Kr](kL). (top right) Ef](kL) along kg
y=a/2. (bottom right) r/a along z=0. axis. (bottom right) Avn(kl) along ky axis.

Fig. 7. Properties of the graded square lattice.
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Consider the graded lattice shown in figure 7(a). The standard defect holes at
(0,£a/2) have r/a = 0.23, while their immediate neighbors have r/a = 0.253. The
hole radii are then increased parabolically outwards for 5 periods in the Z-direction
and 7 periods in the g-direction, after which they are held constant. The nature of this
grading is shown in figure 7(a), where the r/a profiles are given for slices along y = a/2
and x = 0. Along these axes the maximum value r/a attains is 0.31, but along the
diagonal directions r/a grows to be as large as 0.35. The dielectric perturbation, which
now consists of a series of annuli of decreasing width from the center to the edges, has
a FT given in Figure 7(b). Examining both the 2D image and the 1D line scans of the
FT, we see that our grading has greatly diminished the amplitude of &] in the regions
surrounding k, = +7/a and k, = £+7/a.

The FDTD simulations of the defect mode of this structure largely confirm the ideas
described thus far. ()1 has increased to over 110,000, while () has improved even
further to approximately 470,000, giving an overall Qtot ~ 89,000. The magnetic field
amplitude and FT of the in-plane electric field components in Table 8 support these
results. In particular, consider the line scan of E, along the k, axis. It shows that the
grading has met with success, as power has largely been eliminated within the light cone.
This point is particularly striking when contrasted with the corresponding image shown
in Figure 3(b) for the low @ z-dipole mode we took as our baseline. Note that An(k, =
0, k, = £7/a) is identically zero regardless of the grade, due to the position of the defect
holes with respect to the center of the defect, whereas E](kgg = +7/a, k, = 0) is not
automatically zero. It may be advantageous to identically zero Avn(kr =+n/a,k, =0)
as this will allow for the formation of a more localized mode that is still of high Q).
Such a mode would be centered at the f-point of the square lattice, and would either

f.d1 f.d1
be the BAg or BBg mode.

Table 8. Field characteristics of graded square lattice shown in figure 7(a).

E,| E,| |E.| along k, axis
m
= nghe i [ ] ]
cone i M

|FT(Ex)

)ooooo%ooooot 1 -5 0 5 10
1J0000000000000¢ ky (a=1)

d/a Wn Q Q. Qiot Ve
0.75 0.245 470,000 110,000 89,000 0.25
0.85 0.239 422,000 128,000 98,000 0.26
0.95 0.235 296,000 139,000 95,000 0.27
1.05 0.231 280,000 145,000 96,000 0.28

Before concluding, there are a couple of points concerning the chosen lattice that
are worth mentioning. The first is that the initial jump in r/a between the defects at
(0, £a/2) and their neighbors is an important element of this design. Acting as a poten-
tial well, the jump helps confine the mode in real space, allowing r/a to increase quickly
to a value for which the in-plane reflectivity is high without significantly increasing the
modal frequency. The size of the jump is also important; if incorrectly sized the resulting
dielectric perturbation contains larger Fourier amplitudes which couple the mode to the
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M-point for which the PC is no longer reflective and to the light cone in which light
radiates vertically. Simulations have been run on similar structures that do not have an
initial jump, but rather are smoothly graded from r/a = 0.23 — 0.35. The performance
significantly degrades in such a design, with @, and @ dropping to 62,000 and 9, 700,
respectively. A similar Q)-degradation is observed for gradings which occur too quickly,
as a result of the stronger mode localization and subsequent Fourier space broadening
of the mode. An optimum defect design is found when a compromise is struck between
the minimization of the Fourier components of An which couple the dominant momen-
tum components of the defect mode to regions of k-space which radiate, and the degree
to which the dominant momentum components of the mode broaden due to in-plane
confinement by the defect.

It should again be emphasized that the increased @) for these graded lattice designs
is not solely the result of real-space delocalization of the mode. It is instead largely due to
the aforementioned reduction of amplitude for those Fourier components of the dielectric
perturbation that couple the dominant momentum components of the defect mode to
those which radiate. Of course, real-space localization plays a role in determining the
spread in k-space of the dominant Fourier components of the mode, and if this spread
exceeds the size of the region about +ky, that An has been flattened, vertical radiation
will result. An increase in the slab thickness also effects the performance of the structure.
It causes a decrease in the frequency of the mode, thus increasing Q. It also slightly
reduces the size of the in-plane bandgap, decreasing Q). This is in fact seen in the results
of FDTD simulations compiled in Table 8.

Finally, we note that the criteria for choosing the geometries presented in this paper
were entirely based on ) considerations, and optimization of the lattice grading to
further increase ) can still be made. Changes may also be made to improve other
aspects of the design. In particular, reducing the mode volume may be of importance
to applications in quantum optics, while reducing the complexity of the design (in
terms of the number and size of holes comprising the defect) may be of interest from a
fabrication standpoint. The approach to such designs can be aided through the Fourier
space consideration of the dielectric perturbation as has been described in this section.
Doing so will elucidate the potential lossy couplings that occur when the defect mode
is formed, and will help determine whether a given structure is able to sustain a high-Q
mode.

6 Summary

The design of high-@) defect modes in a 2D PC slab WG has been developed through
use of momentum space methods. Starting with the fundamental criterion that the
reduction of vertical radiation losses requires an elimination of momentum components
within the light cone of the slab waveguide, we proceed to present methods by which this
is accomplished. The first is through a judicious choice of the mode’s symmetry so that it
is odd about mirror planes orthogonal to the mode’s dominant Fourier components. To
determine the precise nature of the symmetry for such modes in square and hexagonal
lattices, we refer to the symmetry analysis of [13, 18], from which we produce a set of
candidate modes that satisfy this momentum space criteria. Although symmetry alone
can reduce vertical radiation loss, further modifications of the defect geometry based
upon Fourier space considerations can be used to increase ) even further. Tailoring
the lattice to avoid momentum space couplings which lead to in-plane and vertical
radiation losses, we present graded square lattice structures for which @ exceeds 10°
while maintaining @ in the 3—5x 10° range, demonstrating the possibility of producing
high-@Q modes in a planar PC slab WG by using these techniques.
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