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Introduction
In quantum optics, it is often necessary to simulate the equations of motion of a system coupled to
a reservoir. Using a Schrödinger picture approach, this can be done either by integrating the master
equation for the density matrix[1] or by using some state-vector based approach such as the quantum
Monte Carlo technique[2][3]. Starting from the Hamiltonian of the system and the coupling to the baths,
it is in principle a simple process to derive either the master equation or the stochastic Schrödinger
equation. In practice, however for all but the simplest systems, this process is tedious and can be error-
prone. For a system which is described by an n dimensional Hilbert space, there are n simultaneous
complex-valued Schrödinger equations of motion and n2 simultaneous real-valued equations of motion
for the components of the Hermitian density matrix. Although the matrix of coe¢cients is the square
of the number of simultaneous equations (i.e. n2 for the Schrödinger equation and n4 for the density
matrix equations), many of these coe¢cients are zero and it is feasible to integrate systems of 102 to 103

equations numerically.

The recent interest in quantum systems involving only a few photons and atoms in cavity QED systems
and in quantum logic devices makes it often possible to employ a truncated Fock space basis for the light
…eld modes, yielding essentially exact numerical simulations. This document addresses the problem of
semi-automatically generating the equations of motion for a wide variety of quantum optical systems
working directly from the Hamiltonian and couplings to the bath. This approach substantially reduces
the algebraic manipulations required, allowing a variety of con…gurations to be investigated rapidly.

The Matlab programming language[4] is used to set up the equations of motion. Matlab supports
the manipulation of complex valued matrices as primitive data objects. This is particularly convenient
for representing quantum mechanical operators taken with respect to some basis. We shall see that the
sparse matrix facilities built into the Matlab language allow e¢cient computation with these quantities.
Once the equations of motion have been derived, a variety of solution techniques may be employed. For
small problems with constant Liouvillians for which the eigenvectors and eigenvalues may be computed
explicitly, the steady-state and time-dependent solutions of the master equation can be found in forms
which may be evaluated at arbitrary times without step-by-step numerical integration. For Liouvillians
with special time-dependences, techniques such as matrix continued fractions may be used to …nd periodic
solutions of the master equation which are useful in problems such as calculating the forces on atoms in
standing light …elds. When direct numerical integration cannot be avoided due to the size of the state
space or non-trivial time-dependence in the Hamiltonian, a selection of numerical di¤erential equation
solvers written in C may be used to carry out the solution after the problem has been formulated in
Matlab.

In the next section, the overall philosophy of the toolbox is described and the basic “quantum object”
data structures are introduced. Quantum objects are generic containers for scalars, states, operators and
superoperators and thus possess a fairly rich structure. This will be elaborated upon and illustrated
through a series of problems which demonstrate how the toolbox may be used.

Installation
To install the toolbox on an IBM compatible PC running Windows, unpack the …les into some con-
venient directory, such as c:nqotoolbox. The executable …les _solvemc.exe, _stochsim.exe and
_solvesde.exe and the associated batch …les solvemc.bat, stochsim.bat and solvesde.bat which
are in the bin subdirectory must be copied to a directory which is on the system path (set up in the au-
toexec.bat …le, and which is usually distinct from the Matlab path). Unless this is done, the numerical
integration routines will not operate correctly.

On a machine running Unix or other operating system, it is necessary to make the executable …les
solvemc; stochsim and solvesde from the …les contained within subdirectories of the unixsrc directory.
Simply compile and link all the C …les contained in each of the subdirectories to produce the appropriate
executable …les and ensure that these executables are placed in a directory on the path. For example,
if /home/mydir/bin is on the path, in order to compile solvemc using the Gnu C compiler, one should
change to the subdirectory unixsrc/solvemc and issue a command such as

gcc -o /home/mydir/bin/solvemc *.c -lm

After starting Matlab, add the directory containing the toolbox to the path by entering a command
such as addpath(’c:/qotoolbox’). It should now be possible to access the toolbox …les. In order to try
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out the examples, one should addpath(’c:/qotoolbox/examples’) as well. If you wish these directories
to be added to your Matlab path automatically, it will be necessary to use a startup.m …le, or to edit
the system-wide default path in the matlab/toolbox/local directory.

Run the script qdemos to view a series of demonstrations contained within the examples directory.
The buttons with an asterisk in the names indicate those demonstrations which require the numerical
integration routines to be correctly installed. These demonstrations are discussed in more detail in this
document, where they are referred to in terms of the script …les which run them. In order to show these
script …le names rather than the descriptions of the routines in the buttons of the demonstration, turn
on the checkbox labelled “Show script names”. When running these demonstrations, prompts in the
command window will lead the user through each example. The menu window will be hidden until while
each demonstration is in progress.

Note that the …les in the examples directory beginning with the letter x are script …les which may also
be run manually from the command line. Usually the …le xprobyyy calls a function …le named probyyy
which is discussed in the notes.

This article is presented as a tutorial and the reader is encouraged to try out the examples if a
computer is available. A reference manual with more complete details of the implementation is currently
under preparation. Lines which are in typewriter font and preceeded by a >> may be typed in at the
Matlab prompt.

Quantum Objects
Within the toolbox, the basic data type is a “quantum array” object which, as its name suggests, is
a collection of one or more simple “quantum objects”. Each quantum object may represent a vector,
operator or super-operator over some Hilbert space representing the state space of the problem. In the
computer, the members of a quantum array object are represented as complex-valued vectors or matrices.
We shall use the terms “element” and “matrix” to refer to the representation of the individual quantum
objects and the terms “member” and “array” to refer to the organization of these objects within a
quantum array object.

The usual arithmetic operations are overloaded so that quantum array objects may be combined
whenever this combination makes sense. Furthermore, many of the toolbox functions are polymorphic,
so that, for example, if a state is required, this state may be speci…ed either as a ket vector or as a density
matrix. In the following sections, we shall introduce the structure of a quantum object and show how
several of these may be collected into an array.

1. The representation of pure states
Given a single quantum system such as a mode of a quantized light …eld or the internal dynamics of an
atom, a state ket can be represented by a column vector whose components give the expansion coe¢cients
of the state with respect to some basis. In Matlab, a column vector with n components is written as
[c1;c2;...;cn] where the semicolons separate the rows. In order to create a state within the toolbox
and assign it to a variable psi, we would enter a command such as

>> psi = qo([0.8;0;0;0.6]);

The function qo packages the column vector into as a quantum object. It is technically called a
constructor for the class qo. As a result of the assignment, psi is now a simple quantum object (i.e., a
quantum array object with a single member). If one now types psi at the prompt, the response is

>> psi
psi = Quantum object
Hilbert space dimensions [ 4 ] by [ 1 ]

0.8000
0
0

0.6000

Within the quantum object, additional information is stored together with the elements of the vector.
In the example, this additional information was deduced from the size of the input argument to qo. More
precisely, an object of type qo contains the following …elds:



A Quantum Optics Toolbox for Matlab 5 5

dims Hilbert space dimensions of each object in the array
size Size of the array, specifying the number of members
shape Shape of each object in the array as a two-dimensional matrix
data Data for the quantum object stored as a “‡attened” two-dimensional matrix

For the most part, the user need not be too concerned about manipulating these …elds, as they are
handled by the toolbox routines. In order to examine these …elds, one may enter
>> psi.dims

[4] [1]
>> psi.size

1 1
>> psi.shape

4 1
>> psi.data

(1,1) 0.8000
(4,1) 0.6000
The user can examine, but not modify the contents of these …elds. The dims …eld is the cell array

{[4],[1]}, which means that the objects are matrices of size 4£ 1; which are column vectors. The size
…eld is [1,1] since there is only one object in the array. The shape …eld indicates that each object is of
size 4£1; which at this stage may appear to duplicate the information in the dims …eld, but the distinction
will become clearer as we proceed. Finally the data themselves, i.e., the numbers 0.8, 0.0, 0.0 and 0.6,
are stored as a single column in the data …eld as a sparse matrix (i.e., only the non-zero elements are
stored explicitly). Note that it is also possible to use dims(psi), size(psi) and shape(psi) to access
the above information.
In order to produce a unit ket in an N dimensional Hilbert space, the toolbox function basis(N,indx)

creates a quantum object with a single one in the component speci…ed by indx. Thus we have, for example,
>> basis(4,2)
ans = Quantum object
Hilbert space dimensions [ 4 ] by [ 1 ]

0
1
0
0

2. Tensor product of spaces
Often, we are concerned with systems which are composed of two or more subsystems. Suppose there
are two subsystems for which the dimension of the state space for the …rst alone is m and that of the
second alone is n: The dimension of the Hilbert space for the composite system is mn. If the …rst
system is prepared in state c = [c1; :::; cm] and the second system is independently prepared in the state
d = [d1; :::; dn], the joint state is given by the tensor product of the states which has components
[c1*d1; ... ; c1*dn; c2*d1; ... ; c2*dn; ... ; cm*d1; ... ; cm*dn]
Within the toobox, the construction of the tensor product is carried out as shown in the following

example:
>> psi1 = qo([0.6; 0.8]);
>> psi2 = qo([0.8; 0.4; 0.2; 0.4]);
>> psi = tensor(psi1,psi2)
psi = Quantum object
Hilbert space dimensions [ 2 4 ] by [ 1 1 ]

0.4800
0.2400
0.1200
0.2400
0.6400
0.3200
0.1600
0.3200
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Notice that the dims …eld of the composite object has been set to {[2;4],[1;1]} since this is the
tensor product of an object of dimensions {[2],[1]} and one of dimensions {[4],[1]}. By keeping a
record of the component spaces which are combined together, it becomes possible to carry out calculations
such as partial traces (as described later) as well as to check whether operations are being carried out on
compatible objects. The shape …eld of the composite object is [8,1] which is the shape of the resulting
ket vector.
The tensor function may be used with more than two input arguments if desired in order to form

objects for systems with more components.

3. The representation of operators
Quantum mechanical operators are represented with respect to a basis by matrices in the usual way. It
is possible to construct operators using the qo constructor directly. For example
>> A = qo([1,2,3;2,5,6;3,6,9])
A = Quantum object
Hilbert space dimensions [ 3 ] by [ 3 ]

1 2 3
2 5 6
3 6 9

The dimensions of the Hilbert space are obtained from the size of the matrix speci…ed. If desired,
one can specify the Hilbert space dimensions explicitly using a second argument to the constructor. For
example
>> A = qo(randn(6,6),{[3;2],[3;2]});

generates a random 6£6 matrix, but speci…es that the dimensions are to be taken as [3;2] by [3;2]
rather than as 6 by 6, which would have been assigned to the matrix by default.
Since several operators are used extensively in quantum optics, functions which generate them are built

into the toolbox. For example, the annihilation operator for a single bosonic mode has the Fock-space
representation

hmjajni = pn±m;n¡1
which can be represented by a sparse matrix with entries

p
n on the …rst subdiagonal. The toolbox

function destroy(N) produces a quantum object whose data are a sparse N £N matrix representing this
operator trucated to the Fock space consisting of states with zero to N ¡ 1 bosons. In order to produce
the creation operator, it is only necessary to calculate the conjugate transpose, denoted in Matlab by the
apostrophe. Thus destroy(N)’ is the creation operator in the same space, which may also be produced
by using create(N).
Operators for the angular momentum algebra may also be generated using the toolbox function

jmat(j,type). The type argument may be one of the strings ’x’, ’y’, ’z’, ’+’ or ’-’ while the
argument j is an integer or half-integer. These satisfy the following relations

[Jx; Jy] = iJz et cyc., J§ = Jx § iJy
The resulting matrix is of size (2j + 1)£ (2j + 1) and the matrix elements are given in units of ~; so that
for example, we have
>> jmat(1,’x’)
ans = Quantum object
Hilbert space dimensions [ 3 ] by [ 3 ]

0 0.7071 0
0.7071 0 0.7071

0 0.7071 0

Note that the matrix is stored internally in sparse format. In order to extract the data portion of the
quantum object as an ordinary double matrix, the function double may be used. This returns a sparse
matrix which can be converted into a full matrix using the full function. Thus we have:
>> full(double(jmat(1,’x’)))
ans =
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0 0.7071 0
0.7071 0 0.7071

0 0.7071 0

It is also possible to obtain the operator for n̂ ¢ J where n is a three component vector specifying a
direction by specifying this vector in place of the type string as the second argument of jmat. The vector
n is normalized to unit length, and the operator returned is n̂xJx + n̂yJy + n̂zJz:
The Pauli spin operators are of special signi…cance since they may be used to represent a two-level

system. The convention we use is to de…ne

¾x =

µ
0 1
1 0

¶
= 2J(1=2)x ; ¾y =

µ
0 ¡i
i 0

¶
= 2J(1=2)y ; ¾z =

µ
1 0
0 ¡1

¶
= 2J(1=2)z

which are obtained by using sigmax, sigmay and sigmaz while

¾¡ =
µ
0 0
1 0

¶
and ¾+ =

µ
0 1
0 0

¶
are generated using sigmam and sigmap. Note that ¾§ = 1

2 (¾x § i¾y) ; which is somewhat inconsistent
with the de…nition J§ = Jx § iJy used for the general angular momentum operators.
The function tensor described above is useful for constructing operators in a joint space as it is for

constructing states. Consider a speci…c example of a cavity supporting mode a in which a single two-level
atom is placed. If we truncate the space of the light …eld to be N dimensional, the following lines of code
de…ne operators which act on the space of the joint system:
ida = identity(N); idat = identity(2);
a = tensor(destroy(N),idat);
sm = tensor(ida,sigmam);

In the …rst line, identity operators are de…ned for the space of the light …eld and the space of the atom.
The annihilation operator for the light …eld does not a¤ect the space of the atom, and so a is de…ned
with the identity operator in the atomic slot. Similarly the atomic lowering operator sm is de…ned with
the identity in the light …eld slot.
Let us consider constructing the Hamiltonian operator for the above system driven by an external

classical driving …eld.

H = !0¾+¾¡ + !caya+ ig
¡
ay¾¡ ¡ ¾+a

¢
+ E ¡e¡i!Ltay + ei!Lta¢

where !0 is the atomic transition angular frequency, !c is the cavity resonant angular frequency and !L
is the angular frequency of the classical driving …eld, and we have taken ~ = 1: Moving to an interaction
picture rotating at the driving …eld frequency yields

H = (!0 ¡ !L)¾+¾¡ + (!c ¡ !L)aya+ ig
¡
ay¾¡ ¡ ¾+a

¢
+ E ¡ay + a¢

with the Matlab de…nitions given above, the operator H is simply given by
H=(w0-wL)*sm’*sm + (wc-wL)*a’*a + i*g*(a’*sm-sm’*a) + E*(a’+a);

This can be written down by inspection and will automatically generate the operator for H in the
chosen representation. Notice that by de…ning the operators a and sm as above, we can generate the
representation for operators such as ay¾¡ simply by writing a’*sm. This could alternatively have been
formed using tensor(destroy(N)’,sigmam) but the advantage of the former construction is its similarity
to the analytic expression. Since the operators are stored as sparse matrices, the fact that a and sm
have dimensions larger than destroy(N)’ and sigmam is not an excessive overhead for the notational
convenience.

4. Superoperators and density matrix equations
The generic form of a master equation is

d½

dt
= L½
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where ½ is the density matrix and the Liouvillian L is a superoperator which may involve both premulti-
plication and postmultiplication by other operators. For example, a typical Liouvillian (for spontaneous
emission from a two-level atom) is

L½ = °¾¡½¾+ ¡ °
2
¾+¾¡½¡ °

2
½¾+¾¡

This is a linear, operator-valued transformation acting on ½: When a super-operator such as L acts on a
matrix such as ½; this is actually done by regarding the elements of the matrix ½ as being strung out as a
column vector. In Matlab, given a matrix such as A=[1,2,3;4,5,6;7,8,9], we can construct the vector
denoted by A(:) which simply consists of the elements of A written column-wise, so that in this example,
A(:)=[1;4;7;2;5;8;3;6;9]. We shall follow the convention of column-wise ordering when converting
from matrices to vectors and call this process “‡attening” the matrix. Corresponding to a matrix ½, we
shall denote the ‡attened vector by e½:
Suppose that we have the operator a and the density operator ½ with 2£ 2 matrix representations

a =

µ
a11 a12
a21 a22

¶
and ½ =

µ
½11 ½12
½21 ½22

¶
:

If we premultiply the matrix ½ by the matrix a; we obtain

a½ =

µ
a11½11 + a12½21 a11½12 + a12½22
a21½11 + a22½21 a21½12 + a22½22

¶
The column vector associated with a½ is related to that associated with ½ via the following linear trans-
formation

fa½ =
0BB@
a11½11 + a12½21
a21½11 + a22½21
a11½12 + a12½22
a21½12 + a22½22

1CCA =

0BB@
a11 a12 0 0
a21 a22 0 0
0 0 a11 a12
0 0 a21 a22

1CCA
0BB@
½11
½21
½12
½22

1CCA = spre (a) ~½

The 4 £ 4 matrix represents the superoperator associated with premultiplication by a: We see that it
may be formed simply from the matrix a: This is true in general, and the function spre in the toolbox
is provided in order to compute the superoperator associated with premultiplication by a matrix. Thus
if A and B are square matrices of the same size, the ‡attened version of A*B is equal to spre(A)*B(:).
In the same way, we may represent postmultiplication by a matrix by a superoperator acting on the

vector representation. In the toolbox, the function spost performs this conversion so that the ‡attened
version of A*B can alternatively be found as spost(B)*A(:). We regard spost(B) as a superoperator
acting on the ‡attened matrix A(:) which is a column vector. Notice that since ‡attening always
produces a column vector, superoperators always act on the left of such vectors, i.e.,eab = spost (b) ~a:
The advantage of considering superoperators rather than operators is that the actions of premultipli-

cation and postmultiplication by operators are both converted into premultiplication by a superoperator.
For example, the Liouvillian L given above

L½ = °¾¡½¾+ ¡ °
2
¾+¾¡½¡ °

2
½¾+¾¡;

may be written as a single superoperator once we have the matrices sm representing ¾¡ and sm’ repre-
senting ¾+: It is simply
gamma*(spre(sm)*spost(sm’)-0.5*spre(sm’*sm)-0.5*spost(sm’*sm))

Note that the calculation of ¾¡½¾+ involves postmultiplication by ¾+ and premultiplication by ¾¡:
These operations correspond to the multiplication of the superoperators spre(sm)*spost(sm’) which
happens to be commutative in this case. In the other two terms, we compute the superoperators
corresponding to premultiplication and postmultiplication by ¾+¾¡: It is also possible to consider a
term such as ¾+¾¡½ as a premultiplication by ¾¡ followed by a premultiplication by ¾+ and so this
could be expressed as spre(sm’)*spre(sm)*rho(:). It is easy to check however that spre(sm’*sm) =
spre(sm’)*spre(sm), and that it is more e¢cient to compute this by multiplying the operators together
…rst.
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If there is a Hamiltonian component to the evolution as well, represented by the matrix H, we simply
add in the commutator to the Liouvillian

LH½ = ¡i [H; ½] = ¡i (H½¡ ½H)
This is written using the toolbox as

-i*(spre(H)-spost(H))

From these examples, it should be clear that obtaining the sparse matrix representation of the Li-
ouvillian starting from the Hamiltonian and the collapse operators in the Linblad form of the master
equation is largely automatic, with the bookkeeping done using the sparse matrix structures.

In the toolbox, an additional re…nement has been included. When the functions spre and spost
are applied to operators, they return structures which are more complex than just matrices and so it is
possible to identify the resulting objects as superoperators. For example, if we enter

>> a = tensor(destroy(5),identity(2))
a = Quantum object
Hilbert space dimensions [ 5 2 ] by [ 5 2 ]
...
>> L = spre(a)
L = Quantum object
Hilbert space dimensions ([ 5 2 ] by [ 5 2 ]) by ([ 5 2 ] by [ 5 2 ])
...

we …nd here that a is an operator with Hilbert space dimensions [5 2] by [5 2] since it acts on
ten-dimensional kets to produce ten-dimensional kets. Once we use the function spre, the dimensions be-
come ([ 5 2 ] by [ 5 2 ]) by ([ 5 2 ] by [ 5 2 ]) which indicates that L is now a super-operator
which acts on matrices of dimensions [5 2] by [5 2] to produce a matrix of the same dimensions. Thus
we may write L*rho to compute the product of an super-operator and a density matrix (operator),
returning a matrix (operator) result. Internally, the toolbox calculates the product by using

reshape(L*rho(:),N,N)

where the colon operator and the reshape command are used to ‡atten the density matrix and “un-
‡atten” the resulting vector. It should be emphasized that one should not use the reshape command
explicitly with toolbox objects, as this is done automatically. This is an example of operator overload-
ing since the * operator carries out multiplication of super-operators and operators or of two operators
depending on what makes sense.

5. Calculation of operator expectation values
Given the density matrix ½;…nding the expectation value of some operator a involves calculation of

hai = Tr (a½) ;
which is a linear functional acting on ½ to produce a number. Similarly, given a state ket jÃi ; the
expectation value of a is given by

hai = Tr (a jÃi hÃj) = hÃj a jÃi
In the toolbox, the function expect(op,state) is used to compute the expectation value of an operator
for the speci…ed state. The state may be speci…ed either as a density matrix or as a state vector. Note
that the trace of ½ may be found by setting a to the identity.Steady state solution of a Master Equation

This is a simple, yet complete example of a problem which may be solved using the toolbox. We
consider a cavity with resonant frequency !c and leakage rate · containing a two-level atom with transition
frequency !0, …eld coupling strength g and spontaneous emission rate °: The cavity is driven by a coherent
(classical) …eld E which is such that the maximum photon number in the cavity is small so that it is
adequate to represent it by a truncated Fock state basis. The Hamiltonian of the system is as given
above,

H = (!0 ¡ !L)¾+¾¡ + (!c ¡ !L)aya+ ig
¡
ay¾¡ ¡ ¾+a

¢
+ E ¡ay + a¢
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and there are two collapse operators

C1 =
p
2·a

C2 =
p
°¾¡

corresponding to leakage from the cavity and spontaneous emission from the atom respectively. The
Liouvillian has the standard Linblad form

L = 1

i
(H½¡ ½H) +

2X
k=1

Ck½C
y
k ¡

1

2

³
CykCk½+ ½C

y
kCk

´
:

Having found the Liouvillian, we seek a steady-state solution for ½, i.e., we wish to …nd ½ such that
L½ = 0: The toolbox function steady(L) returns the density matrix ½ representing the steady-state
density matrix for an arbitrary Liouvillian L: This is done using the inverse power method for obtaining
the eigenvector belonging to eigenvalue zero. The solution is normalized so that Tr (½) = 1:

As an illustration, the function below returns the steady-state photocounting rates
D
Cy1C1

E
andD

Cy2C2
E
for photodetectors monitoring the output …eld of the cavity and the spontaneous emission of the

atom, as well as hai which is proportional to the intracavity …eld. The intracavity photon number can
be found from


aya
®
=
D
Cy1C1

E
= (2·) and it is also easy to add to the programme to …nd expectation

values of other quantities such as ¾z or higher moments moments of the intracavity …eld a:
function [count1, count2, infield] = probss(E,kappa,gamma,g,wc,w0,wl,N)
%
% [count1, count2, infield] = probss(E,kappa,gamma,g,wc,w0,wl)
% solves the problem of a coherently driven cavity with a two-level atom
%
% E = amplitude of driving field, kappa = mirror coupling,
% gamma = spontaneous emission rate, g = atom-field coupling,
% wc = cavity frequency, w0 = atomic frequency, wl = driving field frequency,
% N = size of Hilbert space for intracavity field (zero to N-1 photons)
%
% count1 = photocount rate of light leaking out of cavity
% count2 = spontaneous emission rate
% infield = intracavity field

ida = identity(N); idatom = identity(2);
% Define cavity field and atomic operators
a = tensor(destroy(N),idatom);
sm = tensor(ida,sigmam);
% Hamiltonian
H = (w0-wl)*sm’*sm + (wc-wl)*a’*a + i*g*(a’*sm - sm’*a) + E*(a’+a);
% Collapse operators
C1 = sqrt(2*kappa)*a;
C2 = sqrt(gamma)*sm;
C1dC1 = C1’*C1;
C2dC2 = C2’*C2;
% Calculate the Liouvillian
LH = -i * (spre(H) - spost(H));
L1 = spre(C1)*spost(C1’)-0.5*spre(C1dC1)-0.5*spost(C1dC1);
L2 = spre(C2)*spost(C2’)-0.5*spre(C2dC2)-0.5*spost(C2dC2);
L = LH+L1+L2;
% Find steady state
rhoss = steady(L);
% Calculate expectation values
count1 = expect(C1dC1,rhoss);
count2 = expect(C2dC2,rhoss);
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infield = expect(a,rhoss);

A driver routine called xprobss demonstrates how we can obtain the system response as the frequency
of the driving …eld is swept across the common resonant frequencies of the atom and cavity. Figures 1
and 2 show the results of this calculation. In Figure 2 it is evident that the e¤ect of the atom on the
cavity response is reduced for the stronger driving …eld.
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Figure 1: Photocounting rates for cavity output light (solid line) and for atomic spontaneous emission
(dashed line)

Although the separation of the problem into a function which computes the response for a given
set of parameters and a driver routine which loops over the parameter values is convenient, it leads to
several redundant re-evaluations of quantities such as L1 and L2 which are not changed as the driving
frequency is swept. The example …le xprobss2.m illustrates a more e¢cient way of carrying out the
above calculation.

Extracting the underlying matrix from a quantum object
Given a quantum object, the underlying matrix can be extracted by using subscript notation. For
example,
>> A = qo([1,2,0;2,0,6;3,0,9])
A = Quantum object
Hilbert space dimensions [ 3 ] by [ 3 ]

1 2 0
2 0 6
3 0 9

>> A(:,:)
ans =

(1,1) 1
(2,1) 2
(3,1) 3
(1,2) 2
(2,3) 6
(3,3) 9

Notice that only the non-zero elements of A are stored as a sparse matrix. This may be converted into
a full matrix using the notation full(A(:,:)).
Instead of using the colon notation which extracts all the rows and/or columns of the matrix, one can

provide an integer vector of indices using the standard Matlab rules. Thus for example, with the above
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Figure 2: Phase of intracavity light …eld for two values of external driving …eld amplitude

de…nition of A,
>> full(A(2:3,[1,3]))
ans =

2 6
3 9

Note that the result of a subscripting operation applied to a quantum object is to produce an ordinary
sparse matrix, not a quantum object.

Arrays of quantum objects
So far, we have created single quantum objects which may be thought of as quantum array objects with
a single member. It is sometimes convenient to construct an array of several quantum objects, all with
the same dimensions. For example, the state vector of an electron con…ned in one dimension is a spinor-
valued function, so that at each point in space, there is a 2£ 1 ket. If space is discretized, we have a ket
at each of a set of N points. This can be conveniently represented by a N £ 1 member array of quantum
objects each of dimensions 2£ 1: As another example, we may wish to consider the three operators Jx;
Jy and Jz together as a 3£ 1 array of operators which we may denote by J.
Consider entering the array of angular momentum operators associated with j = 2: This may be done

as follows:
>> J = [jmat(2,’x’); jmat(2,’y’); jmat(2,’z’)]
J = 3 x 1 array of quantum objects
Hilbert space dimensions [ 5 ] by [ 5 ]
Member (1,1)
...

Member (2,1)
...

Member (3,1)
...

The size …eld of this object is [3,1] indicating the number of members in the array. It is possible
to access the members by using subscipts within braces. Thus for example, J{2} or J{2,1} evaluates
to the second member J(2)y . One can also assign to a member of a quantum object array by placing a
subscripted expression on the left of the equals sign, so that we could alternatively have written
>> J = jmat(2,’x’); % J is a quantum array object with a single member
>> J{2} = jmat(2,’y’); % Define second member



A Quantum Optics Toolbox for Matlab 5 13

>> J{3} = jmat(2,’z’); % Define third member

This makes J into a 1£ 3 quantum array object. Note that it is important that J is a quantum array
object before additional members are assigned to it. If necessary, a null qo object may be generated …rst
as illustrated below
>> J = qo; % Define a null object
>> J{1} = jmat(2,’x’); % Define first member
>> J{2} = jmat(2,’y’); % Define second member
>> J{3} = jmat(2,’z’); % Define third member

If the initial call to the constructor is omitted, J becomes a cell array of simple quantum objects,
rather than a single quantum array object with three members.
The arrays of quantum objects can have as many dimensions as desired. For example, one can make

an assignment to J{2,2}, which would automatically enlarge the array to the smallest size which includes
all the assigned members, leaving the unassigned members equal to zero. Subscripting with index vectors
and the colon operator are also supported. Note however that the special index end may not be used.
In the above, the construction [A;B;C] was used to form a column of objects. It is similarly possible

to constuct a row of objects by using [A,B,C] or alternatively [A B C]. The rules for constructing arrays
are identical to those for making Matlab matrices and so arrays may also be concatenated horizontally or
vertically in the usual way. Arrays with more than two dimensions can also be constructed by assigning
to an element with more than two subscripts, but support for such constructs is still rudimentary. In
particular, the cat function has not been implemented.
The function jmat may also be called with only one argument j, in which case it returns the 3 £ 1

array, formed manually above. Similarly, basis described previously may also be called with a single
argument, e.g., basis(N) in which case it returns an 1£N array of quantum objects, the k’th member
being a unit ket with a one in the k’th element of the matrix.

6. Operations involving arrays of objects
The basic operations which are de…ned on individual quantum objects may also be applied to arrays
of objects. Unary operations, such as the transpose (.’) and conjugate transpose (’) operations when
applied to an array of quantum objects cause the operation to be applied to each member of the array
in turn, without changing the shape of the array. Thus for example, if psi is a 3£ 2 array of kets with
Hilbert space dimensions [5] by [1]; psi’ is a 3£ 2 array of bras with Hilbert space dimensions [1] by [5]:
Binary operations can be performed on compatible arrays. Two arrays of quantum objects are com-

patible if they are of the same size, or if one of the arrays has only one member. When the arrays are
of the same size, the binary operations are applied to the corresponding members. For example if we
have a 2£ 2 array of operators [A B;C D] and a 2£ 2 array of kets [va vb;vc vd] which have the same
Hilbert space dimensions as the operators, the result of multiplying these two arrays is to form the array
[A*va B*vb;C*vc D*vd]. If one of the arrays has only one member, that member is applied (using the
binary operation) to each of the elements of the other array and the resulting array has the size of the
bigger array. Thus for example, v + [u1;u2;u3] is equal to [v+u1;v+u2;v+u3].

Binary operations can often also be performed between quantum object arrays and ordinary double
(possibly complex-valued) arrays. If the arrays are of the same size, operations take place between
corresponding members. For example if [A B;C D] is an array of quantum objects, we can compute [A
B;C D]^[3 4;2 5] which evaluates to [A^3 B^4;C^2 D^5]. If one of the arrays has only one member,
that member is applied to each of the elements of the other array, and the resulting array has the size of
the bigger array. Thus for example, 2*[A B;C D]=[2*A 2*B;2*C 2*D].
Quantum array objects whose elements are from a one dimensional Hilbert space are regarded as

being equivalent to ordinary double arrays for the purpose of the above compatibility rules.

Table 1 is a list of the operations available for quantum object arrays. Capital letters denote quantum
object (arrays) and lower case letters indicate ordinary double matrices.
For all of the above, the array structure of the quantum object is largely ignored as operations take

place between corresponding members or between a single object and each of an array of objects.
The two functions for which the array structure of the objects is important are combine and sum:
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A+B Addition
A-B Subtraction
A*B Multiplication
A.*B Elementwise multiplication
A^d Matrix power
d^A Matrix exponentiation
A:^B Elementwise power
A’ Conjugate transpose
A.’ Transpose
A.nB Elementwise left division
A/B Matrix right division
A./B Elementwise right division
+A Unary plus
-A Unary minus
diag(Op) Diagonal, returned as a double array
expect(Op,State) Expectation value
trace(Op) Trace of operator
spre(Op), spost(Op) Convert operator to superoperator
tensor(Op1,Op2,...) Tensor product of states or operators

Table 1: Operations on Arrays of Quantum Objects

² The function combine(A,B) is used when an array multiplication is required. It is only valid when
A and B are arrays with two or fewer dimensions, and the number of rows of A is equal to the
number of columns of B. If C = combine(A; B); Cik =

P
j AijBjk where the multiplication between

Aij and Bjk is of the appropriate type for the objects Aij and Bjk: In particular, it is valid for A
or B to be a matrix of doubles, so that we can write, for instance, combine([A,B,C],[1;2;3]) to
calculate A+2*B+3*C.

² The function sum(A)computes the sum of the members of the array A along the …rst non-singleton
dimension. Thus if A is a row or a column array, sum(A) adds up all the members of A. On the
other hand, if A is a rectangular array, sum(A) adds up the columns of A. More generally, one can
use sum(A,nd) to add up along the nd’th dimension of the array. Thus if C=[C1,C2,C3], we can
use sum(C’*C) to calculate C1’*C1 + C2’*C2 + C3’*C3.

7. Orbital Angular Momentum States
The ket space for a system with angular momentum quantum number j is 2j + 1 dimensional, where
j can be an integer or half-integer. For systems with a central potential, the angular part of the wave
function may be decomposed into a sum over spherical harmonics

P
l;m clmY

m
l (µ; Á) ; where each spherical

harmonic Y ml (µ; Á) is an eigenfunction of the orbital angular momentum operators L2 and Lz with
eigenvalues l (l + 1)2 and m respectively. The spherical wave function Ã (µ; Á) =

P
l;m clmY

m
l (µ; Á)

provides a convenient way of visualizing a ket when the angular momentum quantum number is an
integer. The space in which the ket resides is the direct sum of the spaces S(0) © S(1) © S(2) © ::: where
S(l) denotes the 2l + 1 dimensional space associated with quantum number l: The coe¢cients clm may
be divided into [c0;0] ; [c1;1; c1;0; c1;¡1]; [c2;2; c2;1; c2;0; c2;¡1; c2;¡2]; ::: each of which specify a vector in the
component spaces. The toolbox function orbital is used to help us visualize a ket in this space by
allowing us to evaluate Ã (µ; Á) on a grid of µ and Á and for any set of coe¢cients.
First let us consider the situation of a ket in a space of …xed l; so that Ã (µ; Á) =

P
m cmY

m
l (µ; Á) is

a sum over m alone. The coe¢cients cm form a column vector of 2l+1 numbers. For example if we wish
to plot a representation of jl = 2;m = 1i ; the following may be used:
>> theta = linspace(0,pi,45); phi = linspace(0,2*pi,90);
>> c2 = qo([0;1;0;0;0]); % Components are for m = 2,1,0,-1 and -2 respectively
>> psi = orbital(theta,phi,c2);
>> sphereplot(theta,phi,psi);
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Enter the above code, or use the …le xorbital to observe the result. Note that the resulting plot
shows both jÃj as the distance of the surface from the origin and arg (Ã) as the colour of the surface.
The …le xorbital also shows how a rotation of the spatial axes may be applied to the ket c2 to give the
state in a di¤erent orientation.
If we have a ket with components clm for several di¤erent values of l; the function orbital may be

called with additional arguments. For example, it is known that the direction eignket jẑi may be written
as

jẑi =
1X
l=0

r
2l + 1

4¼
jl;m = 0i

If we wish to compute this angular wave function for l = 0 to l = 4; we can write
>> c0 = qo([1]); c1 = sqrt(3)*qo([0;1;0]); c2 = sqrt(5)*qo([0;0;1;0;0]);
>> c3 = sqrt(7)*qo([0;0;0;1;0;0;0]); c4 = sqrt(9)*qo([0;0;0;0;1;0;0;0;0]);
>> psi = 1/sqrt(4*pi)*orbital(theta,phi,c0,c1,c2,c3,c4);

and use sphereplot again to display the result. The …le xdirection illustrates a way of calculating
this for an arbitrary maximum l value by using cell arrays of quantum objects.

8. Simultaneous Diagonalization of Operators
In this section, we introduce the function simdiag which is used to …nd the eigenkets of an operator or the
common eigenkets of a set of mutually commuting Hermitian operators. We can illustrate the calculation
of Clebsch-Gordon coe¢cients by explicit diagonalization of the angular momentum matrices. This will
provide an example of using arrays of quantum objects and performing operations on such arrays.
Refer to the following listing and consider two objects with angular momentum quantum numbers j1

and j2 respectively. The Hilbert space dimensions for the two objects are then 2j1+1 and 2j2+1 so id1
and id2 represent identity operators for these spaces. Next we form an arrays for the angular momentum
operators: J1 is the array [Jx  1; Jy  1; Jz  1] for the …rst object in the two-particle space, and J2
is the corresponding array [1  Jx; 1  Jy; 1  Jz] for the second object. The quatity Jtot is then the
3£ 1 array of operators for the total angular momenta Jx; Jy and Jz:
Recalling that operators act on arrays component-wise, we see that J1^2 is the array [(J1x)

2 ; (J1y)
2 ;

(J1z)
2]: The sum function …nds the sum of the members of a quantum array object, so J1sq=sum(J1^2) is

the operator for J21 = J
2
1x+ J

2
1y + J

2
1z: Alternatively, the combine function may be used to take a matrix

product of [1,1,1] and the array J1^2, also giving the operator J1sq. Similarly we form the operators
J22 and (J1 + J2)

2
: In order to …nd the Clebsch-Gordon coe¢cients, we need to …nd the simultaneous

eigenstates of (J1 + J2)
2 and (J1 + J2)z : This is done using simdiag which gives the state vectors in the

original basis (i.e., in terms of eigenstates of J1z and J2z:)
Enter the commands shown or use the …le xclebsch. The array evalues is of size 4 £ 6 which has

a column for each of the eigenvectors. The …rst row gives the eigenvalues of Jsqtot which we see are¡
3
2

¢ ¡
3
2 + 1

¢
and

¡
1
2

¢ ¡
1
2 + 1

¢
, while the second row gives the eigenvalues of Jztot which are §3

2 ;§1
2

for j = 3
2 and §1

2 for j =
1
2 : The third and fourth rows give the eigenvalues of J

2
1 and J

2
2 which are

obviously
¡
1
2

¢ ¡
1
2 + 1

¢
and (1) (1 + 1) : The output variable states is an array of the six eigenvectors

arranged as a quantum object. The basis kets in the original jm1;m2i basis are
¯̄
1
2 ; 1
®
;
¯̄
1
2 ; 0
®
;
¯̄
1
2 ;¡1

®
;¯̄¡1

2 ; 1
®
;
¯̄¡1

2 ; 0
®
;
¯̄¡1

2 ;¡1
®
while those in the new jj;mi basis are ¯̄32 ; 32® ; ¯̄32 ; 12® ; ¯̄32 ;¡1

2

®
;
¯̄
3
2 ;¡3

2

®
;¯̄

1
2 ;

1
2

®
;
¯̄
1
2 ;¡1

2

®
: The function ket2xfm expresses the states as the transformation matrix hj;mjm1;m2i

or as the matrix hm1;m2jj;mi depending on whether its second argument is ’fwd’ or ’inv’.
j1 = 1/2;
j2 = 1;
id1 = identity(2*j1+1);
id2 = identity(2*j2+1);

J1 = tensor(jmat(j1),id2);
J2 = tensor(id1,jmat(j2));
Jtot = J1 + J2;
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J1sq = sum(J1^2); % or use combine([1,1,1],J1^2);
J2sq = sum(J2^2);
Jsqtot = sum(Jtot^2);
Jztot = Jtot{3};

[states,evalues] = simdiag([Jsqtot,Jztot,J1sq,J2sq]);
xform = ket2xfm(states,’inv’)

For example, we …nd
¯̄
j = 3

2 ;m = ¡1
2

®
= 0:5774

¯̄
m1 =

1
2 ;m2 = ¡1

®
+ 0:8165

¯̄
m1 = ¡1

2 ;m2 = 0
®
:

As a second example of the use of simdiag, we demonstrate the GHZ paradox which strikingly
illustrates the di¤erences in the predictions of quantum mechanics and those of locally realistic theories.
Consider three spin 1

2 particles, on each of which we may choose to measure either the spin in the x
direction or in the y direction. Associated with the operator ¾1x¾

2
y¾

3
y; for example, is a measurement of

the x component of the spin of the …rst particle and the y component of the spin of the second and third
particle. Working in units of ~=2; each measurement yields either 1 or ¡1; and so the product of the
three is also either 1 or ¡1:
The GHZ argument considers the following four operators which all commute with each other: A1 =

¾1x¾
2
y¾

3
y; A2 = ¾

1
y¾

2
x¾

3
y; A3 = ¾

1
y¾

2
y¾

3
x and A4 = ¾

1
x¾

2
x¾

3
x: Under the assumption of local reality, each of

the spin operators ¾1;2;3x;y will in principle have well-de…ned values, although they may not be measured
simultaneously. Classically, the product A1A2A3 is equal to A4 since each ¾1;2;3y appears twice in the
product and (§1)2 = 1: On the other hand, the code in the listing shown below (which is in the …le
xghz.m) demonstrates that when A1; :::; A4 are diagonalized simultaneously, there is an eigenvector for
which the eigenvalues for A1; :::; A4 are 1; 1; 1;¡1: This shows that there is a state for which measurements
of A1; A2 and A3 are certain to yield 1 but for which a measurement of A4 would yield ¡1; which is
opposite in sign to the product of the results for the …rst three observables. This program is contained
in the …le xghz.
sx1 = tensor(sigmax,identity(2),identity(2));
sy1 = tensor(sigmay,identity(2),identity(2));

sx2 = tensor(identity(2),sigmax,identity(2));
sy2 = tensor(identity(2),sigmay,identity(2));

sx3 = tensor(identity(2),identity(2),sigmax);
sy3 = tensor(identity(2),identity(2),sigmay);

op1 = sx1*sy2*sy3;
op2 = sy1*sx2*sy3;
op3 = sy1*sy2*sx3;
op4 = sx1*sx2*sx3;

[states,evalues] = simdiag([op1 op2 op3 op4]);
evalues(:,1)

9. Operator Exponentiation
The toolbox overloads the function expm to allow the exponentiation of operators and superoperators.
The following examples demonstrate the use of this function together with several of the functions avail-
able for visualizing states.
Consider the displacement and squeezing operators for a single mode of the electromagnetic …eld

de…ned by

D (®) = exp
¡
®ay ¡ ®¤a¢

S (") = exp

µ
1

2
"¤a2 ¡ 1

2
"ay2

¶
The following program (contained in xsqueeze.m) draws the Wigner and Q functions of a squeezed state.
The values of ® and " should be chosen to be small enough that the state can be represented adequately
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in a 20 dimensional Fock space. The Wigner and Q functions are computed using the functions wfunc
and qfunc at a set of points de…ned by the vectors xvec and yvec which may be chosen arbitrarily.
Note that the relationships between x; y and a; ay are assumed to be given by

a =
g

2
(x+ iy) ; ay =

g

2
(x¡ iy)

where g is a constant which may be used to account for various de…nitions in use. If the parameter g is
omitted in the call to wfunc or to qfunc, the value g =

p
2 is assumed.

N = 20;
alpha = input(’alpha = ’);
epsilon = input(’epsilon = ’);
a = destroy(N);
D = expm(alpha*a’-alpha’*a);
S = expm(0.5*epsilon’*a^2-0.5*epsilon*(a’)^2);
psi = D*S*basis(N,1);
g = 2;
xvec = [-40:40]*5/40; yvec = xvec;
W = wfunc(psi,xvec,yvec,g);
figure(1); pcolor(xvec,yvec,real(W));
shading interp; title(’Wigner function of squeezed state’);
Q = qfunc(psi,xvec,yvec,g);
figure(2); pcolor(xvec,yvec,real(Q));
shading interp; title(’Q function of squeezed state’);

In the above, the state for wfunc and for qfunc is speci…ed as a ket psi. It is also valid to use a
density matrix to specify the state. The …le xschcat similarly illustrates the calculation of the Wigner
and Q functions of a Schrödinger cat state.
The operator exponential is also useful for generating matrices for rotations through …nite angles since

a rotation through Á about the n axis may be written as exp (¡in ¢ JÁ) : This is illustrated in the …le
xorbital. The …le rotation is also available for converting between descriptions of a rotation speci…ed
in various formats (as Euler angles, as an axis and an angle, as a 3£ 3 orthogonal matrix in SO (3) or as
a unitary matrix in SO (2)). As an example, try entering rotateworld([pi/3,pi/4,pi/2],’euler’).
The …le xrotateworld shows a spinning globe by making successive calls to rotateworld.

10. Superoperator Adjoints
Given a superoperator L which acts on a density matrix ½ via the operation

L½ =A½B
where A and B are operators, we often wish to compute the “superoperator adjoint” eL which is de…ned
so that its action on ½ is

eL½ = By½Ay

where the dagger denotes the adjoints of the operators. In the toolbox, the function sadjoint(L) may
be used to …nd the superoperator adjoint of a quantum object.

Hilbert Space Permutation and Calculation of Partial Traces
It is sometimes desirable to re-order the spaces which are multiplied together in a tensor product. For
example, if we take the product of three operators such as
>> A = tensor(destroy(5),jmat(1/2,’x’),destroy(4));

the result of this is to produce a matrix with Hilbert space dimensions [5 2 4] by [5 2 4]: The toolbox
function permute is provided to change the order of the spaces. For example if we enter
>> B = permute(A,[3,1,2])

the result is to re-order the spaces in A so that B = tensor(destroy(4),destroy(5),jmat(1/2,’x’)).
The function permute may be applied to vectors, operators and super-operators.
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Another operation which is often useful is the calculation of partial traces, usually of density ma-
trices or more generally of any operator. Given a density matrix rho with Hilbert space dimensions
[d1 d2 ::: dm] by [d1 d2 ::: dm]; it is possible to trace over any collection of indicies by specifying which
indicies are to remain after the trace is computed. For example, if we want to trace over spaces 2; 3; ...;
m¡ 1 so that only spaces 1 and m remain, the required command is
>> ptrace(rho,[1,m]);

As an example, consider the density matrix of one of the particles of a Bell pair which may be found
by tracing over the second particle:
>> up = basis(2,1); dn = basis(2,2);
>> bell = (tensor(up,up) + tensor(dn,dn))/sqrt(2);
>> ptrace(bell*bell’,1)
ans = Quantum object
Hilbert space dimensions [ 2 ] by [ 2 ]

(1,1) 0.5000
(2,2) 0.5000

The result is indistinguishable from a statistical mixture of up and down with equal probability. Note
that the …rst argument of ptrace which speci…es the state can be either a density matrix or a ket, so
that it would also be valid to write ptrace(bell,1). In either case, the result of ptrace is to produce
a (reduced) density matrix.
On the other hand, suppose that we measure the second particle and …nd it to be in a state which is

jÃri = (jupi+ jdni) =
p
2; we can calculate the probability that this occurs and the conditional state of

the …rst particle given this measurement result.
>> left = (up + dn)/sqrt(2);
>> Omega_left = tensor(identity(2),left*left’);
>> rho_new = ptrace(Omega_left*bell,1);
>> Prob = trace(rho_new);
>> rho = rho_new / Prob
rho = Quantum object
Hilbert space dimensions [ 2 ] by [ 2 ]

(1,1) 0.5000
(2,1) 0.5000
(1,2) 0.5000
(2,2) 0.5000

We …nd the value of Prob is 12 and that the conditional density matrix is just left*left’, indicating
that the …rst particle is projected into the left state. Computation of trace(rho^2) con…rms that the
system is left in a pure state. The script xptrace carries out the calculations described above.

Truncation of Hilbert space
Given an n dimensional Hilbert space, it is sometimes necessary to extract the components of a quantum
object which lie in some m dimensional subspace of the full space. The toolbox function truncate is
used to achieve this. First consider an example in which the Hilbert space which is not the tensor product
of other spaces:
>> A = qo([ 1, 2, 3, 4;

5, 6, 7, 8;
9,10,11,12;
13,14,15,16]);

>> B = truncate(A,{[1,2,4]})
ans = Quantum object
Hilbert space dimensions [ 3 ] by [ 3 ]

1 2 4
5 6 8
13 14 16

The second argument to truncate is a Matlab cell array object (enclosed in braces). This cell array has
only one element, the selection vector [1,2,4] which speci…es the dimensions along which the truncated
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object is to be computed. The result of the function is another quantum object which is de…ned over a
three dimensional Hilbert space. The order of the elements in the selection vector need not be increasing.
This allows one to permute the order of the basis elements in the Hilbert space.

Next consider a Hilbert space which is the tensor product of several spaces. In this case, the second
argument to truncate is a cell array with as many selection vectors as there are subspaces in the tensor
product. For example,

>> A = tensor(qo(randn(4,4)),qo(randn(3,3)),qo(randn(4,4)))
A = Quantum object
Hilbert space dimensions [ 4 3 4 ] by [ 4 3 4 ]
...
>> B = truncate(A,{1:3,[1,3],3:4})
B = Quantum object
Hilbert space dimensions [ 3 2 2 ] by [ 3 2 2 ]
...

The truncated operator is de…ned in the space formed by taking the …rst three dimensions of the …rst
four-dimensional subspace, the …rst and third dimensions of the second three-dimensional subspace, and
the last two dimensions of the third four-dimensional subspace. The resulting Hilbert space is twelve
dimensional and is the product of subspaces of dimensions 3; 2 and 2 as indicated.

If the truncated Hilbert space cannot be expressed as a tensor product of truncated subspaces, it is
possible to specify an arbitrary collection of basis vectors along which the result is to be computed. For
example, suppose that out of the 48 dimensional Hilbert space over which A operates, we wish to select a
three-dimensional subspace. The basis vectors of the full Hilbert space are outer products of three basis
vectors, one in the …rst four-dimensional subspace spanned by fuig4i=1, say; one in the second three-
dimensional subspace spanned by fvjg3j=1 ; say; and one in the third four-dimensional subspace spanned
by fwkg4k=1. Thus for example, we may specify a basis vector of the Hilbert space by the index vector
[1,3,2] which represents u1v3w2: Similarly, the index vectors [1,1,2] represents u1v1w2 and
[1,2,4] represents u1  v2 w4 If we wish to truncate A to the space spanned by these three vectors,
we use

>> B = truncate(A,[1,3,2; 1,1,2; 1,2,4])
B = Quantum object
Hilbert space dimensions [ 3 ] by [ 3 ]
...

The second argument to truncate in this case is an ordinary matrix, and not a cell array. The rows
of the matrix specify the indices of the basis vectors in each of the subspaces. The number of rows in the
matrix gives the dimensionality m of the truncated space.

Note: The truncate function may be applied to bras, kets, operators or superoperators. It also operates
element by element on arrays of quantum objects.

Exponential Series
In this section we consider obtaining the time-dependent solution of the problem involving an atom in an
optical cavity. In this case, the Liouvillian is time-independent and is small enough to be diagonalized
numerically. Under such circumstances, provided that the eigenvalues of L are not degenerate, it is
possible to write down the time-dependent solution ½ (t) of the master equation as a sum of complex
exponentials exp (sjt) where each sj is an eigenvalue of L: Obtaining the solution in this form allows it
to be evaluated readily at any time in the future. By contrast, carrying out a numerical integration of
the master equation can be computationally intensive for large times. In terms of the framework used
in the toolbox, we wish to express the operator ½ (t) as a linear combination of the exp (sjt), where the
amplitudes may be quantum objects. The general form of this expansion is

~½i (t) =
X
j

aij exp sjt

where ~½ represents the density operator “‡attened” into a vector. In order to …nd the coe¢cient matrix
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aij ; we diagonalize L writing it as

Lik =
X
j

Vijsj
¡
V¡1¢

jk

Thus ¡
eLt
¢
ik
=
X
j

Vij exp (sjt)
¡
V¡1¢

jk

and so

~½i (t) =
X
k

¡
eLt
¢
ik
~½k (0) =

X
j

Ã
Vij

X
k

¡
V¡1¢

jk
~½k (0)

!
exp (sjt)

=
X
j

Vijrj exp (sjt)

where rj are the components of the vector r = V
¡1~½ (0) : This shows that the matrix A =(aij)can be

computed by multiplying V by the diagonal matrix with rj on the diagonal. The conversion from L and
½ (0) to A and s (the vector of eigenvalues sj of L) is carried out by the toolbox function
ES = ode2es(L,r0)

which is so-named as it solves a system of ordinary di¤erential equations with constant coe¢cients as an
exponential series. In this context, an exponential series is a sum of the form

a(t) =
X
j

aj exp (sjt)

where each aj is a simple quantum object (i.e., a scalar, vector, operator or superoperator). Once the
solution in the form of an exponential series, the toolbox may be used to evaluate and manipulate such
exponential series, as will be described in more detail in the next section.

11. Manipulating Exponential Series
In the toolbox, an exponential series is an instance of the class eseries which internally consists of a
one-dimensional quantum array object containing the amplitudes and a vector of rates associated with
the series. If we wish to de…ne the scalar exponential series

f (t) = 1 + 4 cos t¡ 6 sin 2t = 1 + 2exp (it) + 2 exp (¡it) + 3i exp (2it)¡ 3i exp (¡2it) ;
which consists of four amplitudes ( 1; 2; 2; 3i and ¡3i) and four rates ( 0; i; ¡i; 2i and ¡2i), the
constructor function for the eseries class may be used as
>> f = eseries(1)+eseries(2,i)+eseries(2,-i)+eseries(3i,2i)+eseries(-3i,-2i);

Note that the …rst argument to eseries is converted to a quantum object and speci…es an amplitude,
while the second is a rate. If the rate is omitted, a rate of zero is assumed. If we wanted to specify an
operator-valued exponential series such as

b (t) = ¾x exp (¡2t) + ¾y exp (¡3t)
we would have used
>> b = eseries(sigmax,-2)+eseries(sigmay,-3);

An alternative way of specifying the series is give all the amplitudes as a quantum array object followed
by the rates, i.e.,
>> b = eseries([sigmax,sigmay],[-2,-3]);

but of course, with this method it is not possible to replace the quantum array object by a double
array. When the exponential series is displayed, the result is
b =
Exponential series: 2 terms.
Hilbert space dimensions [ 2 ] by [ 2 ].
Exponent{1} = (-2)
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0 1
1 0

Exponent{2} = (-3)
0 0 - 1.0000i
0 + 1.0000i 0

Once an exponential series has been formed, the …eld name ampl may be used to extract the quantum
array object containing the amplitudes and rates may be used to extract the array of rates. Thus,

>> b.ampl
ans = 2 x 1 array of quantum objects
Hilbert space dimensions [ 2 ] by [ 2 ]
Member (1,1)

0 1
1 0

Member (2,1)
0 0 - 1.0000i
0 + 1.0000i 0

>> b.rates
ans=

-2
-3

In the exponential series for b (t), the …rst term is ¾x exp (¡2t) while the second is ¾y exp (¡3t) : One
can place an index in braces to select out some of the terms of the series. Thus we …nd

>> b{2}
b{2}
ans =
Exponential series: 1 terms.
Hilbert space dimensions [ 2 ] by [ 2 ].
Exponent{1} = (-3)

0 0 - 1.0000i
0 + 1.0000i 0

Similarly, b{[2,1]} is the original series with the terms reversed. It is also possible to extract out
terms from an exponential series on the basis of the rates. In this case, parentheses are used to carry out
the indexing. Since the rate associated with ¾x exp (¡2t) in the exponential series b (t) is ¡2; we …nd
that

>> b(-2)
ans =
Exponential series: 1 terms.
Hilbert space dimensions [ 2 ] by [ 2 ].
Exponent{1} = (-2)

0 1
1 0

If the speci…ed rate(s) do not appear within the series, the result is zero. The above constructs may
be combined to extract the amplitude(s) or rate(s) associated with term(s) in the exponential series. For
example, in order to get the amplitude of the term with rate ¡3; we write
>> b(-3).ampl
ans = Quantum object
Hilbert space dimensions [ 2 ] by [ 2 ]

0 0 - 1.0000i
0 + 1.0000i 0

The operators listed in Table 2 have been overloaded for exponential series:

When using expect for exponential series, either the operator or the state (or both) can be exponential
series. An operand which is not an exponential series is …rst converted into one (with rate zero) before
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+ Addition, unary plus
- Subtraction, unary minus
¤ Multiplication
’ Conjugate transpose
.’ Transpose
spre(Op) Convert operator to superoperator for premultiplication
spost(Op) Convert operator to superoperator for postmultiplication
expect(Op,State) Calculate expectation value of an operator for a given state

Table 2: Operations on exponential series

it is used. It is thus invalid to pass a quantum array object with more than one member as a parameter
to expect when the other parameter is an exponential series.
Two special functions associated with exponential series are

² estidy(ES) which “tidies up” an exponential series by removing terms with very small amplitudes
and merging terms with rates which are very close to each other. Control over the tolerances
used to discard and merge terms is available by using additional parameters to estidy. Many
of the functions which manipulate exponential series automatically call estidy(ES) during their
operation, but the function is also available to the user.

² esval(ES,tarray)which evealuates the exponential series ES at the times in tarray. The function
returns an array of quantum objects of the same size as tarray. In the special case of a scalar
exponential series, the result of esval is an array of doubles, rather than an array of quantum
objects. For example, for the exponential series f de…ned above, we may plot f by using

>> t = linspace(0,10,101);
>> y = esval(f,t);
>> plot(t,y);

12. Time Evolution of a Density Matrix
Using these techniques, it easy to alter the code for the problem of an atom in a cavity to give the
time-varying expectation values

D
Cy1 (t)C1 (t)

E
;
D
Cy2 (t)C2 (t)

E
and ha (t)i for a given initial state. If for

example the atom is initially in the ground state and the intracavity light …eld is in the vacuum state,
the initial state vector psi0 is the tensor product of basis(N,1) for the light and basis(2,2) for the
atom. The initial density matrix is the outer product of the state vector and its conjugate. This …le and
its driver are called probevolve and xprobevolve.

function [count1, count2, infield] = probevolve(E,kappa,gamma,g,wc,w0,wl,N,tlist)
%
% [count1, count2, infield] = probevolve(E,kappa,gamma,g,wc,w0,wl,tlist)
% solves the problem of a coherently driven cavity with a two-level atom
% with the atom initially in the ground state and no photons in the cavity
%
% E = amplitude of driving field, kappa = mirror coupling,
% gamma = spontaneous emission rate, g = atom-field coupling,
% wc = cavity frequency, w0 = atomic frequency, wl = driving field frequency,
% N = size of Hilbert space for intracavity field (zero to N-1 photons)
% tlist = times at which solution is required
%
% count1 = photocount rate of light leaking out of cavity
% count2 = spontaneous emission rate
% infield = intracavity field

%%% Same code as in probss.m up to line:
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L = LH+L1+L2;

% Initial state
psi0 = tensor(basis(N,1),basis(2,2));
rho0 = psi0 * psi0’;
% Calculate solution as an exponential series
rhoES = ode2es(L,rho0);
% Calculate expectation values
count1 = esval(expect(C1dC1,rhoES),tlist);
count2 = esval(expect(C2dC2,rhoES),tlist);
infield = esval(expect(a,rhoES),tlist);

Figure 3 shows the photocount outputs from the cavity and the spontaneous emission as functions of
time when the cavity is driven on-resonance. We see that at early times before the atom has had time to
respond to the input …eld, the intracavity …eld is high and the spontaneous emission rate is low. As the
atom comes to steady-state however, the intracavity …eld strength falls.
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Figure 3: Time-dependent photocount rates for driven cavity with atom.

Correlations and Spectra, the Quantum Regression Theorem

13. Two time correlation and covariance functions
Continuing with the example of the atom in the cavity with coherent driving, we now turn to the
computation of the two-time covariance of the intracavity …eld. If we work temporarily in the joint
space of the system and the environment so that the evolution is speci…ed by a total (time-independent)
Hamiltonian Ĥtot; the total density matrix evolves according to

½tot (¿) = exp
³
¡iĤtot¿

´
½tot (0) exp

³
iĤtot¿

´
:

The time-evolution of the expectation value of an operator such as ây is then
ay (¿)

®
= trace

n
ay exp

³
¡iĤtot¿

´
½tot (0) exp

³
iĤtot¿

´o
where the operator ay (¿) on the left hand side is in the Heisenberg picture while those on the right are
in the Schrödinger picture. If we now wish to …nd the two-time correlation function of the Heisenberg
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operator a (t) ; this may be written in the Schrödinger picture by using the identity
ay (t+ ¿)a (t)

®
= trace

¡
ay (t+ ¿)a (t) ½tot (0)

¢
= trace

³
exp

³
iĤtot (t+ ¿)

´
ay exp

³
¡iĤtot¿

´
a exp

³
¡iĤtott

´
½tot (0)

´
= trace

n
ay exp

³
¡iĤtot¿

´
a½tot (t) exp

³
iĤtot¿

´o
:

Formally, the right-hand side is identical to that involved in the calculation of

ay (¿)

®
; except that the

initial condition ½tot (0) is replaced by a½tot (t) : If the operators whose correlation is required are in the
space of the system alone, the integration of the di¤erential equation for time-evolution may be carried
out in the system space alone by utilizing the Liouvillian in place of the total Hamiltonian.
This last expression may be interpreted as follows. Starting with initial condition a½tot (t) ; this is

propagated forward in time using the evolution operator for duration ¿ : After this process, the result is
pre-multiplied by ay and the trace is computed. If we consider taking the partial trace over the reservoir
and re-interpret ½ as the system density operator rather than the total density operator, the evolution in
time through ¿ is performed using the exponential of the Liouvillian, i.e., exp (L¿) : This is the essence
of the quantum regression theorem [5]. In the steady-state, as t!1; the correlation function depends
only on ¿ : We can thus compute the stationary two-time correlation by

1. Setting the initial condition for the di¤erential equation solver to a½ss where ½ss is the steady state
density matrix which is the solution of L½ = 0;

2. Propagating the initial condition through time ¿; representing the answer as an exponential series,
using the function ode2es.

3. Finding the trace of ay multiplied by the solution of the di¤erential equation. This can be thought of
as an expectation value with a “state” given by the solution of the di¤erential equation.
In view of these considerations, we see that the following code calculates


ay (t+ ¿)a (t)

®
and


ay (t+ ¿) ; a (t)

®
as exponential series in ¿:
function [corrES,covES] = probcorr(E,kappa,gamma,g,wc,w0,wl,N)
%
% [corrES,covES] = probcorr(E,kappa,gamma,g,wc,w0,wl,N)
% returns the two-time correlation and covariance of the intracavity
% field as exponential series for the problem of a coherently driven
% cavity with a two-level atom
%
% E = amplitude of driving field, kappa = mirror coupling,
% gamma = spontaneous emission rate, g = atom-field coupling,
% wc = cavity frequency, w0 = atomic frequency, wl = driving field frequency,
% N = size of Hilbert space for intracavity field (zero to N-1 photons)
%
% Same code as in probss up to line:
L = LH+L1+L2;
% Find steady state density matrix and field
rhoss = steady(L);
ass = expect(a,rhoss);
% Initial condition for regression theorem
arho = a*rhoss;
% Solve differential equation with this initial condition
solES = ode2es(L,arho);
% Find trace(a’ * solution)
corrES = expect(a’,solES);
% Calculate the covariance by subtracting product of means
covES = corrES - ass’*ass;
In the last line of this example, the correlation is converted to a covariance by subtracting the constant

ay
® hai : This is a scalar which is automatically converted into an exponential series.
Figure 4 shows the two-time covariance function for the system for on-resonance driving for two values

of atom-…eld coupling g. For small values of g; the covariance falls monotonically whereas for larger values
of g; there are oscillations.
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Figure 4: Two-time covariance function for di¤erent atom-…eld interaction strengths

The method described above may similarly used to compute other correlation functions involving two
di¤erent operators, such as ha (t1) b (t2)i :

14. Calculation of the power spectrum
Given a stationary two-time covariance function Á (¿) =


ay (t+ ¿) ; a (t)

®
expressed as an exponential

series

Á (¿) =

½ P
j cj exp(sj¿) for ¿ ¸ 0
Á¤ (¡¿) for ¿ < 0

the power spectrum is simply given by

©(!) = 2Re
X
j

cj
i! ¡ sj

The toolbox function esspec(es,wlist) evaluates the power spectrum from an exponential series at the
frequencies speci…ed in wlist. The result is an array of quantum objects of the same size as wlist. In
the special case when all the elements of es are scalars, the result is an array of doubles.
Figure 5 shows the power spectrum calculated for the system for the parameters shown in 4. Note

that the interaction picture is based on a frame rotating at the frequency of the driving …eld, so that the
frequency axis is relative to the driving frequency. The example …les xprobcorr and probcorr illustrate
the above calculation.

15. Force and momentum di¤usion of a stationary two-level atom
in a standing-wave light …eld
We now consider the problem of a stationary two-level atom in a standing wave light …eld which is treated
classically [6]. Due to the ‡uctuations in the dipole force, there will be momentum di¤usion causing an
increase in the mean-square momentum with time. Consider a standing wave in the z direction with the
e¤ective Rabi frequency being given by

g (z) = 2g0 coskLz

The Hamiltonian for this problem in an interaction picture rotating at the frequency of the light …eld is

H = ¡¢¾+¾¡ ¡ i (g¤¾¡ ¡ g¾+)
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Figure 5: Power spectra calculated from two-time covariance functions

where ¢ is the detuning of the laser relative to the atomic transition. The only dissipative is spontaneous
emission with associated collapse operator C1 =

p
°¾¡:

At any time, if the dipole moment of the atom is d and the electric …eld at the location of the atom
is E; the force experienced by the atom in the light …eld is given by

fi=
@

@xi
(dxEx + dyEy + dzEz) :

In the case of the one-dimensional standing wave, we …nd that

f = fz = i ((rg¤)¾¡ ¡ (rg)¾+)
= ¡2ikLg0 (¾¡ ¡ ¾+) sin kLz

In order to …nd the spatial variation of the force when the atom is stationary at z0, we simply need
to …nd the steady-state values of h¾+i and h¾¡i : The force on the atom at that position is then

hfi = hfzi = i ((rg¤) h¾¡i ¡ (rg) h¾+i) :

The momentum di¤usion constant is de…ned as half the rate of increase of the momentum variance
with time, i.e.,

Dp =
1

2

d

dt

D
(p¡ hpi)2

E
:

This may simply be related to the force acting on the atom,

Dp =
1

2

¿
(p¡ hpi) ¢ d

dt
(p¡ hpi) + d

dt
(p¡ hpi) ¢ (p¡ hpi)

À
:

=
1

2
hf ¢ p+ p ¢ fi ¡ hfi ¢ hpi
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At a speci…c time t; assuming that p (¡1) = 0;

Dp (t) =
1

2

¿
f (t) ¢

Z 1

0

f (t¡ ¿) d¿ +
Z 1

0

f (t¡ ¿) d¿ ¢ f (t)
À

¡ hf (t)i ¢
¿Z 1

0

f (t¡ ¿) d¿
À

= Re

Z 1

0

(hf (t) ¢ f (t¡ ¿)i ¡ hf (t)i ¢ hf (t¡ ¿)i) d¿

= Re

Z 1

0

hf (t) ; f (t¡ ¿)i d¿

where the real part arises because the two-time force correlation function is hermitian symmetric in the
time di¤erence ¿ : Thus Dp is given by the real part of the time-integral of the force covariance.
The methods developed in the previous examples can be applied directly to this problem. Our strategy

is to …nd the steady-state density matrix for the atom at the position z0 and to use this to compute the
two-time force covariance Á (¿) as an exponential series. Once in the form of an exponential series

Á (¿) =
X
k

Ák exp (skt)

we see that if sk < 0 for all k; the integral is simply given byZ 1

0

Á (¿) d¿ = ¡
X
k

Ák
sk

The toolbox function esint(ES) integrates an exponential series from zero to in…nity. This function may
also be used with extra arguments, esint(ES; t1) integrates a series from t1 to in…nity and esint(ES; t1; t2)
integrates a series from t1 to t2:
The …le probstatic.m listed below calculates the force, momentum di¤usion constant and sponta-

neous emission rate for a stationary atom in a standing wave. The corresponding driver …le is called
xprobstatic.m. Figure 6 shows these quantities for a standing wave with g0 = 1; ¢ = 2; ° = 1: Note
that this momentum di¤usion does not include the contribution due to random recoil during spontaneous
emission. This additional term is proportional to the spontaneous emission rate and depends on the polar
pattern of spontaneous emission.
function [force,diffuse,spont] = probstatic(Delta,gamma,g0,kL,z)
% [force,diffuse,spont] = probstatic(Delta,gamma,g0,kL,z) calculates the force,
% momentum diffusion and spontaneous emission rate for a stationary
% two-level atom in a standing wave light field.
%
% Delta = laser freq - atomic freq
% gamma = atomic decay
% g0 = coupling between atom and light, g(z) = 2*g0*cos(kL*z)
% kL = wavenumber of light
% z = position in standing wave
g = 2*g0*cos(kL*z);
gg = -2*g0*kL*sin(kL*z);
%
sm = sigmam;
%
H = -Delta*sm’*sm - i*(g’*sm - sm’*g);
F = i*(gg’*sm - gg*sm’);
C1 = sqrt(gamma)*sm;
%
C1dC1 = C1’*C1;
LH = -i*(spre(H)-spost(H));
L1 = spre(C1)*spost(C1’)-0.5*spre(C1dC1)-0.5*spost(C1dC1);
L = LH + L1;
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% Find steady state density matrix and force
rhoss = steady(L);
force = expect(F,rhoss);
spont = expect(C1’*C1,rhoss);
% Initial condition for regression theorem
Frho = spre(F)*rhoss;
% Solve differential equation with this initial condition
solES = ode2es(L,Frho);
% Find trace(F * solES)
corrES = expect(F,solES);
% Calculate the covariance by subtracting product of means
covES = corrES-force^2;
% Integrate the force covariance and return real part
diffuse = real(esint(covES));
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Figure 6: Force, momentum di¤usion and spontaneous emission from a stationary two-level atom in a
standing-wave light …eld.

Force on a moving two-level atom

16. Introduction to Matrix Continued Fractions
In this example, we introduce a problem in which the Liouvillian matrix is time-dependent, so that it
is no longer possible to write the answer as a …nite exponential series. If the time-dependence is simply
the sum of a constant and a sinusoidally varying term, it is sometimes possible to use the method of
matrix continued fractions (see e.g., Risken [7]) in order to obtain special solutions of the equation. This
method is especially useful for …nding the force on an atom moving in a light …eld with an intensity or
polarization gradient. We consider a master equation of the form

d½

dt
= (L0 + L1 exp (i!t) + L¡1 exp (¡i!t)) ½

and ask for solutions ½ (t) which may be expressed as an exponential series of the form

½ (t) =
1X

n=¡1
½n exp (in!t) :

In the application of …nding the force on a moving atom, the atom is taken to be in…nitely massive and
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is dragged at constant velocity v through a sinusoidally varying light …eld. Since the Hamiltonian (and
the force) depends on the position in the atom, the Liouvillian L contains terms which vary sinusoidally
in space and hence in time with ! = kLv where kL is the wave number of the light …eld. In general, for
certain special values of !0; there are solutions to the di¤erential equation of the form

½ (t) = exp (i!0t)
1X

n=¡1
½n (!0) exp (in!t)

We wish to compute the exponential series for the case !0 = 0; so that ½ (t) is given by a Fourier series.
Substituting the supposed solution into the master equation yields

1X
n=¡1

in!½n (!0) exp (in!t) =
1X

n=¡1
(L0 + L1 exp (i!t) + L¡1 exp (¡i!t))

£ ½n (!0) exp (in!t)
Equating the coe¢cients of the series yields the tridiagonal recursion relation

0 = L1½n¡1 + (L0 ¡ in!I) ½n + L¡1½n+1
Such a recursion may often be solved by the method of continued fractions. Suppose that for n ¸ 1; it is
possible to …nd a sequence of matrices Sn with the property that ½n = Sn½n¡1: If these matrices exist,
then by the recursion relationship, we require

[L1 + (L0 ¡ in!I)Sn + L¡1Sn+1Sn] ½n¡1 = 0:
This can be done simply by setting

L1 + (L0 ¡ in!I)Sn + L¡1Sn+1Sn = 0
or

L1 + [(L0 ¡ in!I) + L¡1Sn+1]Sn = 0

Sn = ¡ [(L0 ¡ in!I) + L¡1Sn+1]¡1 L1:
This expresses Sn in terms of Sn+1: We start with some large N and set SN = 0: Using this recursion
we obtain the matrix S1: This is called a continued fraction because if we consider the case when S and
L are in fact a scalars, and if we write an = ¡L1; bn = L0 ¡ in!I and cn = L¡1; the recursion may be
written as

Sn =
an

bn + cnSn+1

and so

S1 =
a1

b1 +
c1a2

b2 +
c2a3
b3 + :::

which is a classical continued fraction.
Similarly, if for n · ¡1; we can …nd a sequence of matrices Tn with the property that ½n = Tn½n+1;

we require that

[L1Tn¡1Tn + (L0 ¡ in!I)Tn + L¡1] ½n+1 = 0
which can be done by setting

L1Tn¡1Tn + (L0 ¡ in!I)Tn + L¡1 = 0
from which we …nd

Tn = ¡ [(L0 ¡ in!I)+L1Tn¡1]¡1 L¡1:
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This expresses Tn in terms of Tn¡1:We start with some large N and set T¡N = 0: Using this recursion
we obtain the matrix T¡1:
Having obtained S1 and T¡1; we return to the tridiagonal relation for n = 0; namely

0 = L1½¡1 + L0½0 + L¡1½1
and substitute for ½1 and ½¡1 in terms of ½0; obtaining

0 = (L1T¡1 + L0 + L¡1S1) ½0
If the matrix L1T¡1+L0+L¡1S1 is singular, which indicates that the choice !0 = 0 does in fact give a
solution to the original equation, this enables us to calculate ½0 and subsequently ½n for all other values
of n; provided that we have stored the appropriate Sn and Tn:
The toolbox function mcfrac uses the matrix continued fraction algorithm to …nd the exponential

series for the density matrix when given the exponential series for the Liouvillian. This function also
takes two additional input parameters, one to indicate the value of N at which SN and T¡N are set to
zero in order to start the recursion, and the other to indicate how many terms of the exponential series
for ½ are required, since in principle, this is an in…nite series.

17. Setting up the problem
We consider a two level atom which is being dragged at constant velocity v through a light …eld which
is oriented along the z direction. Due to the motion, the position of the atom at time t is z = vt: The
electric …eld experienced by the atom is g(z); normalized such that the interaction energy of the atom
within the …eld is

V (z) = ¡ (g¤ (z)¾¡ + g (z)¾+)
The force exerted on the atom due to the light …eld is

F (z) = (rg¤ (z)¾¡ +rg (z)¾+) :
Since z = vt; each of these becomes a function of time. For a running wave, g(z) is a complex exponential
g (z) = g0 exp (ikLz) ; whereas for a standing wave, g(z) = 2g0 cos kLz:When using the toolbox, functions
which are the sum of terms with exponential time-dependence are represented by exponential series. So
for example, if due to the motion, the atom sees g (t) = 2g0 cos kLvt; this is an exponential series with
two terms g (t) = g0 exp (ikLvt) + g0 exp (¡ikLvt) : In order to specify this using the toolbox, we use
g = eseries(g0,i*kL*v) + eseries(g0,-i*kL*v);

With this de…nition, the contribution to the Hamiltonian due to the optical potential may be calculated
as an exponential series:
A = sigmam;
H = -(g’*A + A’*g) + H0;

Similarly, the two lines given below compute the exponential series for the force operator:
gg = eseries(i*kL*g0,i*kL*v) + eseries(-i*kL*g0,-i*kL*v);
F = gg’*A + gg*A’;

The Hamiltonian and Liouvillian are also required in the form of exponential series. In the code below,
we see that spre(H) and spost(H) convert the operator exponential series for H into superoperator expo-
nential series required for the computation of L. Although it is straightforward to manipulate exponential
series using the toolbox, it is usually best to do as much of the calculation as possible with constant ma-
trices, converting these to exponential series only when absolutely necessary, since calculations involving
series are somewhat slower than those involving constants. Thus for example, in the typical Liouvillian
with a time-dependent Hamiltonian,

L½ = ¡i [H(t); ½] +
X
n

Cn½C
y
n ¡

1

2
CynCn½¡

1

2
½CynCn;

the loss terms involving the collapse operators are not time-dependent. We would then calculate these
collapse operators using ordinary matrices and form the entire superoperatorX

n

Cn½C
y
n ¡

1

2
CynCn½¡

1

2
½CynCn
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as an ordinary matrix (using spre and spost, just as before). Finally, this superoperator would be
converted into an exponential series and combined with the terms involving the Hamiltonian. In the line
L=LH+L1 below, LH is an exponential series while L1 is a quantum object. When they are added together,
the result is automatically converted to an exponential series.
When the Liouvillian can be expressed as an exponential series of the form

L = L0 + L1 exp (i!t) + L¡1 exp (¡i!t) ;
(where for this example ! = kLv); there is a special toolbox routine
rhoES= mcfrac(LES,Ncf,Nes)

which uses the matrix continued fraction method outlined above to …nd the central terms of the expo-
nential series for ½; namely if

½ =
1X

k=¡1
½k exp (ik!t)

the routine …nds ½k for k = ¡Nes; :::; Nes by using Ncf terms of a matrix continued fraction expansion.
Since the force operator and the density matrix are exponential series, the expected value of the force is
also an exponential series. In order to get the correct value for the time-averaged force (i.e., averaged
over travel through one cycle of the light), we need the terms ½1 and ½¡1 for the density matrix, since
the force operator contains time dependencies of the form exp (§i!t) : More precisely, since

F (z = vt) = i (rg¤ (vt)¾¡ ¡rg (vt)¾+)
= F1 exp (i!t) + F¡1 exp (¡i!t) ;

the expectation value of F is

Tr (½F ) = Tr

Ã 1X
k=¡1

½k exp (ik!t) (F1 exp (i!t) + F¡1 exp (¡i!t))
!

=
1X

k=¡1

£
Tr
¡
½k¡1F1

¢
+Tr

¡
½k+1F¡1

¢¤
exp (ik!t)

and the time-averaged force is the term with k = 0; namely

Tr
¡
½¡1F1

¢
+Tr (½1F¡1) :

The toolbox function expect has been overloaded to calculate the expectation values when both the
operator and the state are exponential series. The result is also an exponential series. The …le prob2lev.m
calculates the cycle-averaged force on a two-level atom and this is listed below. The Hamiltonian used is

Hint = ¡¢¾+¾¡ ¡ (g¤ (z)¾¡ + g (z)¾+)
where, as usual ¢ is the laser frequency minus the atomic transition frequency. Notice how the term
in the Hamiltonian ¡¢¾+¾¡ is synthesized using the projection operators onto the excited state, since
¾+¾¡ = jei hej : The result of the calculation is shown in Figure 7 for parameter values corresponding to
Figure 1a of Minogin and Serimaa [8]. Taking into account the di¤erence in the notation, the results are
in agreement. Note that the result force is an exponential series, and that we require the cycle-averaged
term associated with s = 0: This is obtained using the notation force(0).ampl.
function force = prob2lev(v,kL,g0,Gamma,Delta)
% force = prob2lev(v,kL,g0,Gamma,Delta)
%
% Calculates the force on a moving two-level atom travelling at
% speed v in a standing wave with wavenumber kL. The coupling
% strength is g0, the atomic spontaneous emission rate is
% Gamma and the detuning is Delta
%
Ne = 1; Ng = 1; Nat = Ne+Ng;
% Form the lowering operator
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A = sigmam;
% Time-dependent couplings for atom and field
g = eseries(g0,i*kL*v) + eseries(g0,-i*kL*v);
gg = eseries(i*kL*g0,i*kL*v) + eseries(-i*kL*g0,-i*kL*v);
% Form interaction picture Hamiltonian
% Excited state terms
excited = basis(Nat,1:Ne);
H0 = -Delta*sum(excited*excited’);
% Interaction with light
H = -(g’*A + A’*g) + H0;
% Force operator
F = gg’*A + gg*A’;
% Collapse operators
C1 = sqrt(Gamma)*A; C1dC1 = C1’*C1;
% Liouvillians
L1 = spre(C1)*spost(C1’)-0.5*spre(C1dC1)-0.5*spost(C1dC1);
% Calculate total Liouvillian as an exponential series
LH = -i*(spre(H)-spost(H));
L = LH + L1;
% Matrix continued fraction calculation
rho = mcfrac(L,20,1);
force = expect(F,rho);
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Figure 7: Cycle-averaged force on a moving two-level atom in a standing wave evaluated using the method
of matrix continued fractions.

Multilevel atoms

In this example, we show how the previous calculation for two-level atoms may be straightforwardly
extended to multiple-level atoms in light …elds with polarization gradients, rederiving the results found
by Dalibard and Cohen-Tannoudji [9]. We consider two cases, an atom with a Jg = 1 to Je = 2 transition
in counter-propagating (¾+; ¾¡) light and an atom with a Jg = 1

2 to Je =
3
2 transition in a light …eld

with counter-propagating lin?lin polarization.

With a multilevel atom, the Hilbert space of the atom is of dimensionNa = Ne+Ng whereNe = 2Je+1
andNg = 2Jg+1:We represent this by a vector whose …rstNe components are the excited state amplitudes
followed by the Ng ground state amplitudes. Since the light …elds are treated classically, this is the full
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Hilbert space. Instead of a single lowering operator ¾¡ for the two-level atom, there are three lowering
operators which we shall denote by A¡1;A0; and A1 which respectively couple to light of ¾¡; ¼ and ¾+
polarizations. Each of these involve linear combinations of transitions between excited and ground levels,
with weighting factors given by the appropriate Clebsch-Gordon coe¢cients. The matrix representation
of one of these matrices of size (Ne +Ng) £ (Ne +Ng) may be compared with the two-level lowering
operator ¾¡ of size 2£ 2 as follows

¾¡ =

e gµ
0 0
1 0

¶
e
g

Ap =

e gµ
0 0
ap 0

¶
e
g

where ap is a matrix of size Ng £ Ne containing the Clebsch-Gordon transitions (p = 0;§1) and the
bold face zeros are block matrices of the appropriate sizes. The toolbox routine murelj calculates the
submatrices a¡;a0 and a+ for an arbitrary Jg to Je transition and the routine murelf calculates the
corresponding matrices for an (Fg; Jg) to (Fe; Je) transition when the hyper…ne structure induced by
nuclear spin I is important.
Associated with light …elds travelling in the z direction, there are functions + (z) and ¡ (z) repre-

senting the Rabi frequencies for ¾+ and ¾¡ polarizations respectively. The light-induced portion of the
interaction Hamiltonian is given by

Hlight-atom = ¡1
2
(+ (z)A+ +¡ (z)A¡) + h.c.

and the corresponding force operator is

F =
1

2
(r+ (z)A+ +r¡ (z)A¡) + h.c.

The collapse operators representing spontaneous emission into each of the possible polarizations arep
°A¡;

p
°A0 and

p
°A+:

Let us consider …rst the case of counter-propagating (¾+; ¾¡)light. The listing below (probmulti1.m)
shows how the exponential series for the force may be found. Notice how similar this program is to
prob2lev.m for the two-level atom. The noteworthy features are the calculation of the three lowering
operators Ap and the formation of the exponential series for the atom-light interaction and the force
operator. In place of g (and its gradient gg) for the single polarization which interacts with the two level
atom, there are gp and gm (and their gradients ggp and ggm) specifying the amplitudes of the ¾+ and ¾¡
circular polarizations. For each of the polarizations, there is a travelling wave, the ¾+ light propagating
towards +z and the ¾¡ light propagating towards ¡z: Another noteworthy point is the formation of the
loss Liouvillian for all three collapse channels together by using a quantum object array. In Figure 8 the
cycle averaged force is shown as a function of the velocity. This is the same as shown in Figure 8 of the
paper by Dalibard and Cohen-Tannoudji [?], taking into account the factor of two which they include in
their units of the force.
function force = probmulti1(v,kL,Jg,Je,Omega,Gamma,Delta)
% Calculate the force on an atom with light fields in a
% sigma+ sigma- configuration.
Ne = 2*Je+1; Ng = 2*Jg+1; Nat = Ne+Ng;
% Form the lowering operators for various polarizations of light
[am,a0,ap] = murelj(Jg,Je);
Am = sparse(Nat,Nat); Am(Ne+1:Ne+Ng,1:Ne)=am; Am = qo(Am);
A0 = sparse(Nat,Nat); A0(Ne+1:Ne+Ng,1:Ne)=a0; A0 = qo(A0);
Ap = sparse(Nat,Nat); Ap(Ne+1:Ne+Ng,1:Ne)=ap; Ap = qo(Ap);
% gp = 0.5*Omega*exp(i*kL*z);
% gm = 0.5*Omega*exp(-i*kL*z);
% ggp = 0.5*i*kL*Omega*exp(i*kL*z);
% ggm = -0.5*i*kL*Omega*exp(-i*kL*z);
% Due to motion, these become exponential series in time (z=vt)
gp = eseries(0.5*Omega,i*kL*v);
gm = eseries(0.5*Omega,-i*kL*v);
ggp = eseries(0.5*i*kL*Omega,i*kL*v);
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Figure 8: Cycle averaged force on an atom with a Jg = 1 to Je = 2 transition in counterpropagating
(¾+; ¾¡) light …elds. Parameters used are ° = 1;  = 0:25; ¢ = ¡0:5 and kL = 1:

ggm = eseries(-0.5*i*kL*Omega,-i*kL*v);
% Form interaction picture Hamiltonian
% Excited state terms
excited = basis(Nat,1:Ne);
H0 = -Delta*sum(excited*excited’);
% Interaction with sigma+ light
Hp = -(gp’*Ap + gp*Ap’);
% Interaction with sigma- light
Hm = -(gm’*Am + gm*Am’);
%
H = H0 + Hp + Hm;
% Force operator
Fp = (ggp’*Ap + ggp*Ap’);
Fm = (ggm’*Am + ggm*Am’);
F = Fp + Fm;
% Collapse operators as an array
C = sqrt(Gamma)*[Am,A0,Ap];
% Loss Liouvillians
Lloss = spre(C)*spost(C’)-0.5*spre(C’*C)-0.5*spost(C’*C);
% Calculate total Liouvillian
L = -i*(spre(H)-spost(H)) + sum(Lloss);
% Matrix continued fraction calculation
rho = mcfrac(L,20,1);
force = expect(F,rho);

The corresponding …le for treating lin?lin polarization are shown in the following listing (probmulti2.m).
Note that the changes are limited to the de…nitions of gp and gm (and their gradients ggp and ggm) of
the light …elds. In Figure 9 the results are shown for this case, using parameters which are the same as
in Figure 7 of Dalibard and Cohen-Tannoudji [?].

function force = probmulti2(v,kL,Jg,Je,Omega,Gamma,Delta)
% Calculate the force on an atom with light fields in a
% lin-perp-lin configuration.
Ne = 2*Je+1; Ng = 2*Jg+1; Nat = Ne+Ng;
% Form the lowering operators for various polarizations of light
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[am,a0,ap] = murelj(Jg,Je);
Am = sparse(Nat,Nat); Am(Ne+1:Ne+Ng,1:Ne)=am; Am = qo(Am);
A0 = sparse(Nat,Nat); A0(Ne+1:Ne+Ng,1:Ne)=a0; A0 = qo(A0);
Ap = sparse(Nat,Nat); Ap(Ne+1:Ne+Ng,1:Ne)=ap; Ap = qo(Ap);
% gp = sqrt(0.5)*Omega*sin(kL*z);
% gm = sqrt(0.5)*Omega*cos(kL*z);
% ggp = sqrt(0.5)*kL*Omega*cos(kL*z);
% ggm = -sqrt(0.5)*kL*Omega*sin(kL*z);
% Due to motion, these become exponential series in time (z=vt)
gp = 0.5*(eseries(sqrt(0.5)*i*Omega,i*kL*v) - eseries(sqrt(0.5)*i*Omega,-i*kL*v));
gm = 0.5*(eseries(sqrt(0.5)*Omega,i*kL*v) + eseries(sqrt(0.5)*Omega,-i*kL*v));
ggp = 0.5*(-eseries(sqrt(0.5)*kL*Omega,i*kL*v) - eseries(sqrt(0.5)*kL*Omega,-i*kL*v));
ggm = 0.5*(eseries(sqrt(0.5)*i*kL*Omega,i*kL*v) - eseries(sqrt(0.5)*i*kL*Omega,-i*kL*v));
%
% rest of code is identical to probmulti1
%
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Figure 9: Cycle-averaged force for an atom with a Jg = 1
2 to Je =

3
2 transition in a lin?lin light …eld

con…guration. Parameters are ° = 1;  = 0:3; ¢ = ¡1; kL = 1:

Larger problems, numerical integration
So far, the problems we have considered have been small enough that it has been possible to carry out
operations such as the diagonalization or the inversion of the Liouvillian matrix. Since the size of the
Liouvillian matrix becomes very large as the number of states is increased, these techniques are less useful
for larger problems. The toolbox thus provides for the numerical integration of the equations of motion
for a variety of problems.

1. Even when the Liouvillian matrix L is too large to be inverted or diagonalized (operations whose
computational load scale with N3 or N4 when L is an N £N matrix), it is often possible to integrate
the master equation numerically

d½

dt
= L½

starting with some initial condition ½ (0) = ½0: This is especially the case when L is a sparse matrix,
so that the load associated with …nding L½ may be quite small. The strategy we adopt is to exploit
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the techniques used in the toolbox and the sparse matrix algorithms of Matlab to form the matrix L
and subsequently to carry out the numerical integration of the equations of motion using a compiled
routine written in C. We use Matlab to write out a …le containing L and ½0 which can be read in
by the di¤erential equation solver. The solution is written to another …le which may then be read
back into Matlab where expectation values and other statistics may be computed. It is also relatively
easy to treat the case in which the Liouvillian matrix L is explicitly time-dependent, and this is also
provided for in the toolbox.

2. If there are too many components in the density matrix, an alternative approach is to consider the
state vector Ã and the Schrödinger equations of motion, which in the case of no dissipation may be
written in the form

i
dÃ

dt
= H (t)Ã

This is again an initial value problem, with Ã (0) = Ã0 being given. The routine will compute Ã at a
speci…ed list of times.

3. When dissipation is present, but a wave function approach is still required, it is possible to use a
quantum trajectory (or quantum Monte Carlo) approach. In this approach, each trajectory consists
of continuous evolution according to a modi…ed Scrödinger equation of the form

i
dÃ

dt
= He¤ (t)Ã;

which is punctuated by “quantum jumps” at which the state vector changes discontinuously according
to

Ã (t+) =
Ck (t)Ã (t¡)
kCk (t)Ã (t¡)k ;

where fCk (t)g are a family of collapse operators, the probability of the kth collapse in an interval dt
being given by

kCk (t)Ã (t)k2 dt:
The e¤ective non-Hermitian Hamiltonian is given by

He¤ (t) = H (t)¡ i

2

X
k

Cyk (t)Ck (t) :

The above procedure is repeated for a large number of trajectories. For each trajectory, the initial
condition is Ã (0) = Ã0 and the solution takes the form of the stochastic wave function Ã (t) recorded
at a pre-speci…ed list of times together with a classical record which is a list of times at which a
collapse occured together with the index of the collapse.

4. Since the use of a quantum trajectory approach often requires operator expectation values to be
averaged over many trajectories in order to obtain ensemble predictions, recording the evolution of
the stochastic wave function for each of these trajectories can use a large amount of disc space. In
order to avoid this problem, the quantum trajectories simulation can also be run while specifying a list
of operators represented by matrices Ak (t) : For each trajectory, the expectation of these operators
are computed using

hAk (t)i = hÃ (t) jAk (t) jÃ (t)i
hÃ (t) jÃ (t)i

These are averaged over trajectories, and the averaged results are written out after each of a speci…ed
number of trajectories.

All of these problems may be solved using a routine called solvemc which is an external program
spawned as a subprocess from within Matlab. The programme solvemc is written in C using routines
from RANLIB[10] and CVODE[11] both available from the Netlib repository. In the PC distribution, the
…les _solvemc.exe and solvemc.bat are included, and must be copied to a directory which is on the
system path. In the Unix distribution, it is necessary to compile and link all the C …les in the subdirectory
unixsrc/solvemc and to place the result in a directory on the path.
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In the above we have to deal with time-varying operators such as L (t) ; H (t) ; Ck (t) and Ak (t) :
Each of these may be considered as a sparse matrix which depends on time. Typical time-variations
may include exponential series, which may be of interest when considering atoms moving at constant
velocity in light …elds or for situations with light …elds of several colours. In other cases, we may wish to
consider other time-variations, such as a Gaussian to represent the e¤ects of time-varying light pulses or
the passage of atoms at constant velocity through …elds with spatially varying pro…les. In the toolbox,
the standard di¤erential equation solver is designed to represent an operator A (t) as a function series
which takes the form

A (t) = A1f1 (t) + :::+Anfn (t)
where each of A1 through An is a sparse matrix, and f1 through fn are chosen from a library of prede…ned
functions, each of which may be controlled by several parameters. If A is in fact a constant, only a single
term in this series is needed and the function f1 is in fact a constant. In the following examples we shall
illustrate the use of the di¤erential equation solver in a variety of problems, and introduce the notation
for forming function series as they become necessary.

18. Integration of a master equation with a constant Liouvillian
The solution of ordinary di¤erential equations is handled using the toolbox functions ode2file and
odesolve. The former writes out a data …le which contains the de…nition of the problem and the latter
is used to spawn the C routine solvemc which reads in the data …le, carries out the numerical integration
and writes the output …le. For a master equation, the output …le will consist of the density matrix
evaluated at a list of times. The toolbox function qoread is then used to read in the data as a quantum
array object.
A portion of the function probintmaster is shown below in order to illustrate how these routines are

called in a typical problem.
% Calculate the Liouvillian L
% Initial state
psi0 = tensor(basis(N,1),basis(2,2));
rho0 = psi0 * psi0’;
% Set up options, if required
options.lmm = ’ADAMS’;
options.iter = ’FUNCTIONAL’;
options.reltol = 1e-6;
options.abstol = 1e-6;
% Write out the data file
ode2file(’file1.dat’,L,rho0,tlist,options);
% Call the equation solver
odesolve(’file1.dat’,’file2.dat’);
% Read in the output data file
fid = fopen(’file2.dat’,’rb’);
rho = qoread(fid,dims(rho0),size(tlist));
fclose(fid);

The problem is set up in the usual way and ode2file is called. The …rst argument to ode2file is
the name of the data …le which is to be generated, here called file1.dat. The second argument is the
operator or super-operator on the right-hand side of the system of di¤erential equations, which in this
case is just the Liouvillian L. The third argument is the initial condition, which in this case is the density
matrix rho0 formed by taking the outer product of the initial state psi0. The fourth argument tlist is
a vector of times at which the solution is required.
The …fth argument to ode2file is optional and is used to specify additional options to the di¤erential

equation integration routines. If present, it is a structure containing one or more of the following …elds:

² lmm: A string specifying the linear multistep method used. It may be ’ADAMS’ for the Adams-
Bashford method or ’BDF’ for the backwards di¤erence formula. The Adams-Bashford method
(which is the default) is preferable for smooth problems, while the backwards di¤erence formula
method is preferable for sti¤ problems.
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² iter: A string specifying how the implicit problem is solved within each step. It can be ’FUNC-
TIONAL’ for functional iteration (the default), or ’NEWTON’ for a Newton method with Jacobi
preconditioning. The Newton method is preferable for sti¤ problems.

² reltol: A number specifying the relative tolerance, which defaults to 10¡6:

² abstol: Either a number or a vector specifying the absolute tolerance, which also defaults to 10¡6:

² maxord: Maximum linear multistep model order to be used by solver. Default is 12 for ADAMS and
5 for BDF.

² mxstep: Maximum number of internal steps to be taken by the solver in its attempt to reach the
next timestep (default 500).

² mxhnil: Maximum number of warning messages issued by solver that t+h = t on the next internal
step (default 10).

² h0: initial step size.

² hmax: maximum absolute value of step size allowed.

² hmin: minimum absolute value of step size allowed.

Following the call to ode2file, the routine odesolve is called in order to carry out the integration.
The two arguments to this routine are the names of the input …le (which should be the same as that
passed to ode2file) and the name of the output …le, which will be overwritten if it already exisits.
Matlab will spawn the external C programme to carry out the integration and waits until the programme
terminates with either a success or failure. This is indicated by the external programme producing one of
the …les success.qo or failure.qo in the working directory. If the paths have not been set up correctly,
the external program will not start and neither of these …les will be produced. In this case, the Matlab
programme will hang until a break command (usually Control-C) is entered.
While the external routine is carrying out the integration, a single-line progress bar indicates how far

the calculation has proceeded. This may either appear in a separate window or in the Matlab command
window, depending upon the operating system. On successful completion, the output …le, in this case
file2.dat, will contain the results of the integration. The fopen statement opens the output …le and the
…le descriptor fid is passed to the function qoread to allow the data to be read into a Matlab quantum
array object. A …le descriptor rather than the …le name is used since it is often necessary to make multiple
calls to qoread to read in the data in sections, rather than all at once. The second argument to qoread
speci…es the Hilbert space dimensions of the quantum array object, which should be the same as those of
the initial condition and the third argument speci…es the number of records that are to be read. In the
example, size(tlist) is used, which speci…es that all the data are to be read. The size of the resulting
quantum array object is given by this argument. Alternatively, a smaller number may be used to read in
fewer records at a time.
Running the …le xprobintmaster should give the same result as xprobevolve previously solved using

exponential series. However, if the value of N is increased, the time required to complete xprobintmaster
rises more slowly than for xprobevolve. Note that it is important to close the data …les after use. If an
error occurs, …les may be left open which may cause the C routine to fail. If this happens, the Matlab
command fclose all is useful for closing all …les opened by Matlab.

19. Integration of a master equation with a time-varying
Liouvillian
As an example of a time-dependent master equation, let us consider dragging a two-level atom through
a standing light …eld at constant velocity, as considered above. Instead of calculating the cycle-averaged
force in the steady-state, let us consider …nding the time-dependnt force when the atom is initially
prepared in some known state. The Liouvillian has the form

L = L0 + L1 exp (i!t) + L¡1 exp (¡i!t) ;
which is the sum of three terms. Using the code as for the problem of the force on a moving two-level
atom, we may …nd the Liouvillian as an exponential series, and then extract the sparse matrices L0; L1
and L¡1 corresponding to the rates 0; i! and ¡i!: These amplitudes are then used to form a function
series which appear on the right-hand side of the system of equations.
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The following extract from probtimedep.m illustrates the formation of the function series

% Find Liouvillian L as an exponential series
% Atom initially is in ground state
psi0 = basis(2,2); rho0 = psi0 * psi0’;
% Extract amplitudes of various terms in the exponential series
L0 = L(0).ampl;
Lp = L(i*kL*v).ampl;
Lm = L(-i*kL*v).ampl;
% Make the function series for the right hand side
rhs = L0 + Lp*fn(’cexp’,i*kL*v) + Lm*fn(’cexp’,-i*kL*v);
ode2file(’file1.dat’,rhs,rho0,tlist);
% Call the equation solver
odesolve(’file1.dat’,’file2.dat’);
% Read in the output data file
fid = fopen(’file2.dat’,’rb’);
rho = qoread(fid,dims(rho0),size(tlist));
fclose(fid);
% Calculate expectation values
Flist = esval(F,tlist);
force = expect(Flist,rho);

In this example the amplitudes L0, Lp and Lm are associated with rates 0, i*kL*v and -i*kL*v respec-
tively, so the subscripts in parentheses are used to extract the appropriate terms from the exponential
series. These amplitudes are used to form the function series for the Liouvillian. Only a few functional
dependences have been coded up so far, but they should cover many of the situations which arise in
practice. Adding extra functions is relatively straightforward, although modi…cations need to be made
both to the C routines and the Matlab routines in the @fseries directory.
The toolbox routine fn is used to generate a scalar-valued function for incorporation into a function

series. The available functions are shown in the table
Syntax Functional form

fn(’gauss’,mu,sigma) exp
h
¡1
2

¡
t¡¹
¾

¢2i
fn(’gauss’,mu,sigma,omega) exp

h
¡1
2

¡
t¡¹
¾

¢2 ¡ i!ti
fn(’cexp’,s) exp (st)
fn(’pulse’,s,t1,tr,t2,tf) A (t) exp (st)

where for the pulse, the amplitude A (t) = A1 (t)A2 (t) speci…es a pulse from t1 to t2 with rise time
tr and fall time tf : More precisely,

A1 (t) =

8<: 0 for t < t1 ¡ 1
2 tr

1
2 f1 + sin [¼ (t¡ t1) =tr]g for jt¡ t1j · 1

2 tr
1 for t > t1 + 1

2 tr

and

A2 (t) =

8<: 1 for t < t2 ¡ 1
2 tf

1
2 f1¡ sin [¼ (t¡ t2) =tr]g for jt¡ t2j · 1

2 tf
0 for t > t2 + 1

2 tf

:

In the table, the quantity s may be complex, but all the other numeric parameters to fn must be real.
The functions generated by fn may be combined into a function series by premultiplying by quantum
objects and by addition and subtraction. Thus in the example, the line
rhs = L0 + Lp*fn(’cexp’,i*kL*v) + Lm*fn(’cexp’,-i*kL*v);

creates the function series specifying the time-dependent Liouvillian. The second argument to ode2file
specifying the operator(s) on the right-hand side of the di¤erential equation can be a function series.
For checking whether a function series is correct, it is often useful to be able to evaluate one at a list

of times so that the result can be plotted. The toolbox function fsval is useful for this purpose. The
following shows how a function consisting of the sum of two gaussians may be plotted.
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Figure 10: Time-dependent force on an atom dragged at constant velocity through a standing wave light
…eld.

tlist = linspace(-5,5,201);
fs = fn(’gauss’,-2,1)+fn(’gauss’,3,0.5);
plot(tlist,fsval(fs,tlist));
After the data is read back from the equation solver, the force is calculated. A slightly unusual aspect

is that the force operator is also time-depenedent, making it necessary to use esval in order to evaluate
it at the times in tlist before the expectation value may be computed. In the last line, both Flist and
rho are arrays of quantum array objects with the same number of elements, and so the force is evaluated
element-by-element at each of the times in tlist.
Running the …le xprobtimedep shows how the force on the atom gradually becomes periodic after the

initial transient. The cycle average can be found and the value compares favourably with that found for
the earlier problem. The result is shown in Figure 10.

Quantum Monte Carlo simulation

20. Individual trajectories
As an example of a quantum Monte Carlo simulation in which we write out the results of individual
trajectories so that the evolution of the wave function may be considered in detail, let us consider a
single cavity mode in a two-sided cavity with di¤erent mirror re‡ectivities. The code which performs this
simulation is given in xprobqmc1.m.
Da = 0; Na = 10; Ka = 0.1;
a = destroy(Na); H0 = Da*a’*a;
C1 = sqrt(3*Ka/2)*a; C2 = sqrt(1*Ka/2)*a;
C1dC1 = C1’*C1; C2dC2 = C2’*C2;
Heff = H0 - 0.5*i*(C1dC1 + C2dC2);
psi0 = basis(10,10);
% Quantum Monte Carlo simulation
dt = 0.1;
tlist = (0:100)*dt;
ntraj = 100;
mc2file(’test.dat’,-i*Heff,{C1,C2},{},psi0,tlist,ntraj);
mcsolve(’test.dat’,’out.dat’,’clix.dat’);
% Read in wave functions, trajectory by trajectory
fid = fopen(’out.dat’,’rb’);
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photnum = zeros(1,length(tlist));
for l = 1:ntraj

if gettraj(fid) ~= l, error(’Unexpected data in file’); end
psi = qoread(fid,dims(psi0),size(tlist));
photnum = photnum + expect(a’*a,psi)./norm(psi).^2;

end
% Find average photon number
photnum = photnum/ntraj;
fclose(fid);
plot(tlist,photnum,tlist,(Na-1)*exp(-2*Ka*tlist));
xlabel(’Time’); ylabel(’Number of photons’);
% Read in classical record
fid = fopen(’clix.dat’,’rb’);
clix = clread(fid);
fclose(fid);

In the …rst part of this program, the parameters are set up. There is only a single mode of the light
…eld which is expanded in a Fock space of zero to nine photons. The Hamiltonian is

H = ¢aa
ya

and the collapse operators corresponding to photons leaking out of the two cavity mirrors are

C1 =

r
3·a
2
a and C2 =

r
·a
2
a:

In the quantum Monte Carlo algorithm, it is necessary to calculate the e¤ective non-Hermitian Hamilto-
nian which gives the evolution between quantum jumps. This is

He¤ = H ¡ i

2

X
k

CykCk:

The initial wave function is taken to be a nine photon Fock state, represented by the column vector psi0.
In order to carry out the Monte Carlo simulation, the problem description needs to be written out to

a …le, which is carried out by the routine mc2file. The …rst argument is the name of the data …le to
be written and the second de…nes the right-hand side of the system of equations, which in this case is
¡iHe¤ : In general, this can be a function series, but in this example, we only have a constant quantum
object. The third argument is a cell array of function series describing the collapse operators for the
problem. Note that this is not a quantum array object as de…ned previously, which accounts for the use
of the notation {C1,C2} rather than [C1,C2]. The reason why a quantum array object is not appropriate
is that in general we want to specify a collection of function series (since the collapse operators may be
time-dependent) and not a collection of quantum objects. In this example, the two function series happen
to be the constant operators C1 and C2.
The fourth argument is an empty cell array to indicate that we want the programme to generate and

write out the stochastic wave functions (cf. the next section). The …fth argument is the initial condition,
which is a state vector in this case. The sixth argument is the list of times at which the solution is
required and the seventh argument is the number of trajectories to compute. Although not used here, an
optional eighth argument may be included to pass options to the di¤erential equation solver. The option
structure is described above in connection with the routine ode2file. In addition to those mentioned
above, there is the …eld seed which may be used to change the seed of the random number generator. If
the seed is not set, a random value is taken based on the Matlab random number generator.
The routine mcsolve calls the external C programme and speci…es the names of the data …le (test.dat),

the output …le (out.dat) containing the state vectors and the classical record …le (clix.dat). Following
this, the data in the …le out.dat are read back into Matlab for further processing. The data consist of
ntraj blocks, each block containing the trajectory number followed by the state vector evaluated at the
times speci…ed in tlist. The toolbox function gettraj reads the next integer in the …le and returns its
value. This is compared to the expected trajectory number, and an error is signalled if this is incorrect.
The function qoread is then called to read in the wave function which has Hilbert space dimensions
dims(psi0) and is a quantum array object with size(tlist) members.
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Note that in the quantum Monte Carlo algorithm, the wave function is not normalized, since the
norm is used to calculate when the next collapse is to occur. When calculating expectation values, the
toolbox routine expect(C1,psi) evaluates hÃjC1jÃi which is correct if Ã is normalized. Since the wave
funtion is not normalized, we need to divide this (element-by-element) by the square of the norm of
Ã; thus evaluating hÃjC1jÃi = hÃjÃi : Figure 11 shows the result of averaging over the …ve trajectories
together with the analytic solution.
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Figure 11: Mean photon number in cavity averaged over …ve quantum trajectories

Finally the classical record in the …le clix.dat is processed. The routine clread is used to read in the
data and places them in a structure array named clix with two …elds times and channels. The list of
times at which photons are detected leaving the two mirrors on trajectory k is given by clix(k).times
while clix(k).channels contains a vector of ones and twos indicating the mirror at which each photon
was detected. Note that the entire classical record must be read in at once using the routine clread. In
the example, collapses occur more frequently due to C1 than due to C2 since the mirror transmissivity is
higher.

21. Computing averages
Often when using the quantum Monte Carlo algorithm, we only wish to compute the expectation value
of some collection of operators over a number of trajectories. The state vectors associated with the
individual trajectories are not required and sometimes would require too much disk space to store. The
toolbox provides a means by which the user can specify a list of operators for which these expectation
values are required. As an example, let us redo the problem of the two-level atom in the driven cavity,
this time using the Monte Carlo algorithm. Recall that the Hamiltonian is

H = (!0 ¡ !L)¾+¾¡ + (!c ¡ !L)aya+ ig
¡
ay¾¡ ¡ ¾+a

¢
+ E ¡ay + a¢

and that there are two collapse operators

C1 =
p
2·a

C2 =
p
°¾¡:

We shall suppose that we wish to …nd the expectation values of Cy1C1; C
y
2C2 and of the intracavity …eld

a: The code for this problem is found in the …le probqmc2.m which is listed below
function [count1, count2, infield] = probqmc2(E,kappa,gamma,g,wc,w0,wl,N,tlist,ntraj)
%
% [count1, count2, infield] = probqmc2(E,kappa,gamma,g,wc,w0,wl,N,tlist,ntraj)
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% illustrates solving the master equation by quantum Monte Carlo
% integration of the equation. This is the same problem as solved by probevolve.m.
%
ida = identity(N); idatom = identity(2);
% Define cavity field and atomic operators
a = tensor(destroy(N),idatom);
sm = tensor(ida,sigmam);
% Hamiltonian
H = (w0-wl)*sm’*sm + (wc-wl)*a’*a + i*g*(a’*sm - sm’*a) + E*(a’+a);
% Collapse operators
C1 = sqrt(2*kappa)*a;
C2 = sqrt(gamma)*sm;
C1dC1 = C1’*C1;
C2dC2 = C2’*C2;
% Calculate Heff
Heff = H - 0.5*i*(C1dC1+C2dC2);
% Initial state
psi0 = tensor(basis(N,1),basis(2,2));
% Quantum Monte Carlo simulation
nexpect = mc2file(’test.dat’,-i*Heff,{C1,C2},{C1dC1,C2dC2,a},psi0,tlist,ntraj);
mcsolve(’test.dat’,’out.dat’);
fid = fopen(’out.dat’,’rb’);
[iter,count1,count2,infield] = expread(fid,nexpect,tlist);
fclose(fid);

Notice that the call to the function mc2file now has a non-empty fourth argument, which is a cell
array containing the function series describing the operators whose expectation values are required. In
this example, the operators happen to be independent of time, but in general, they may be function
series. If the fourth argument to mc2file is non-empty, the external integration routine does not write
out the state vector for each trajectory but rather computes the averages of the expectation values of the
speci…ed operators, and writes them out at the end of the simulation, i.e., after the completion of ntraj
trajectories. When the output …le out.dat is read back into Matlab, the toolbox function expread is
used (rather than qoread) since we are reading expectation values and not quantum objects. In order
to read these data successfully, expread needs to know the number of expectation values which were
computed as well as the list of times at which these were found. It is therefore important that the same
parameter tlist sent to mc2file be also sent to expread. For convenience, the number of expectation
values required (three in the example, corresponding to the number of function series in the cell array
passed as the fourth argument to mc2file) is returned by mc2file so that it can be sent as the second
argument to expread. The …rst output argument of expread is always the iteration number at which
the expectation values are computed followed by the various expectation values (in this case count1,
count2 and infield) requested.
As usual, the …le xprobqmc2 calls probqmc2 with some parameters and the results of averaging over

…ve hundred trajectories are shown in Figure. Notice that this is converging to the result shown in Figure
3.
Sometimes it is desirable to carry out averages, not over all the ntraj trajectories but after a smaller

number of trajectories. For example, instead of …nding the average over all 500 trajectories, we may
…nd averages over 5 groups of 100 trajectories each. This can be done by passing a two element vector
[500,100] as the seventh argument to mc2file. The script xprobqmc3 and function probqmc3 show how
this may be done for the above problem.
The script xprobtimedep1 shows how the quantum Monte Carlo algorithm may be used to solve

the problem of the moving atom in the standing wave previously treated using the master equation in
xprobtimedep. For this example, the e¤ective Hamiltonian and the force operator are explicitly time-
dependent and are expressed as function series before being sent to mc2file.

Quantum State Di¤usion
Instead of monitoring the cavity output using direct photodetection, it is possible to carry out homodyne
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Figure 12: Monte Carlo simulation, average over 500 trajectories

and/or heterodyne detection. Two numerical algorithms are included to solve these problems, one based
on the …rst-order Euler algorithm and the other based on converting the Itô form of the stochastic
di¤erential equation into Stratonovich form and integrating the resulting equation using the CVODE
di¤erential equation package. Simulations using these algorithms are often very much slower than for the
quantum Monte Carlo algorithm, and care is necessary to use a su¢ciently small timestep for stability
and the required accuracy, especially with the …rst-order Euler equation.
Suppose that C1 is the (only) collapse operator appearing in the Linblad form of the master equation.

If the light associated with this output mode is measured with a homodyne detector when the (un-
normalized) conditional state vector is jÃi ; the stochastic Schrödinger equation for jÃi is given by

d jÃi = ¡iHe¤ jÃi dt+C1 jÃi dQ

dQ =

D
ÃjC1 + Cy1jÃ

E
hÃjÃi dt+ dW

where _Q represents the un…ltered homodyne photocurrent di¤erence, He¤ = H ¡ i
2C

y
1C1 and dW is a

Wiener increment. The phase of the local oscillator in the homodyne detector may be set by considering
C1 exp (iÁ) as the collapse operator instead of C1: In these units, we see that

¿
dQ

dt

À
=

D
ÃjC1 +Cy1 jÃ

E
hÃjÃi :

If on the other hand, we carry out heterodyne detection of this light …eld, this is equivalent to rotating the
phase of the local oscillator rapidly and collecting a complex quantity Z by synchronous demodulation.
The stochastic Schrödinger equation in this case is given by

d jÃi = ¡iHe¤ jÃi dt+C1 jÃi dZ

dZ =

D
ÃjCy1 jÃ

E
hÃjÃi dt+

(dW1 + i dW2)p
2

where He¤ is as given above and dW1 and dW2 are independent Wiener increments.
In the toolbox, the C programs stochsim and solvesde are used instead of solvemc to carry

out stochastic simulations in which homodyne, and heterodyne may be present. As before, the basic
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Schrodinger equation is

i
dÃ

dt
= He¤ (t)Ã

where He¤ is a function series. The collapse operators Ci (t) are now divided into two classes, the …rst
are associated with homodyne measurements and the second with heterodyne measurements. There can
be as many collapse operators as desired in each class, and each of these collapse operators is (in general)
a function series. When a “classical record” is required in this case, this is a record of the photocurrents
for all of the homodyne and heterodyne detectors.
The …le xprobdiffuse1 illustrates the problem of the two-sided leaky cavity, where homodyne detec-

tion takes place out of one mirror and heterodyne detection occurs out of the other. The setting up of
the problem is identical with that discussed above for xprobqmc1 until the line which calls mc2file. In
order to carry out a state di¤usion simulation, the routine sde2file is called instead as illustrated in the
listing below
%
[nexpect,nphoto] = sde2file(’test.dat’,-i*Heff,{C1},{C2},{NN},psi0,tlist,ntraj);
sdesolve(’test.dat’,’out.dat’,’photo.dat’);
fid = fopen(’out.dat’,’rb’);
[iter,photnum] = expread(fid,nexpect,tlist);
fclose(fid);
f1 = figure(1);
plot(tlist,real(photnum),tlist,(Na-2)*exp(-2*Ka*tlist));
xlabel(’Time’); ylabel(’Number of photons in cavity’);
fid = fopen(’photo.dat’,’rb’);
for k = 1:ntraj

% Read homodyne and heterodyne records for successive trajectories
[iter,homo,hetero] = phread(fid,nphoto,tlist);

end
The arguments for sde2file are very similar to those for mc2file. The …rst two arguments are

the name of the data …le and the function series for the right-hand side of the di¤erential equation (i.e.
¡iHe¤ ). The third argument is a cell array of function series giving the operators for homodyne detection
while the fourth is a cell array of function series giving the operators for heterodyne detection. Note that
in this example there is only one operator in each cell array, but the braces are still required. The …fth
argument is a cell array of function series specifying the operators whose expectation values are required,
the sixth is the initial condition, the seventh is the list of times at which the solution is required, and the
eighth is the number of trajectories or a vector with the total number of trajectories and the frequency
at which averages are to be computed. An optional ninth parameter speci…es options to the di¤erential
equation solver. The option structure is described above in connection with the routine ode2file. For
stochastic di¤erential equations, the option hmax is ignored. Note that the list of times must be evenly
spaced and start at zero for this algorithm to work correctly.
The output arguments from sde2file are the number of expectation values nexpect and a two

element vector nphoto which contains the number of homodyne operators and the number of heterodyne
operators. After writing the data …le, the routine eulersolve or sdesolve is used to call the external
program which integrates the equations, using either the …rst-order Euler method or the CVODE library.
The arguments are the data …le name, the name of the output …le for either the stochastic state vectors
or the expectation values, and the name of the …le to contain the photocurrent record. The routine
expread is used in the usual way to read in the expectation values while phread is used to read in the
photocurrent records for all the homodyne and heterodyne detectors. Each call to phread returns the
record for one trajectory. The homodyne records are real while the heterodyne records are complex.
As another example, the …les xprobdiffuse2 and probdiffuse2 illustrate the solution of the problem

considered in probqmc2 using state di¤usion rather than a quantum jump simulation. The results after
averaging 100 trajectories are similar to those using the jump simulations.

Quantum-state mapping between atoms and …elds
As a …nal set of examples, the problem considered by Parkins, Marte, Zoller, Carnal and Kimble [12] is
examined using the toolbox. The problem involves the passage of a multilevel atom through two light
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…elds with di¤erent polarizations, one being a classical laser …eld and the other being the …eld within a
high Q cavity. Each of these light …elds has a Gaussian intensity pro…le, which turns into a time-varying
coupling as the atom transits through the …elds. By starting with the atom in a particular initial state,
one can generate interesting states of the cavity …eld after the passage. Since the atom is assumed to
have sixteen internal levels and the cavity has up to nine photons, the state space is rather large, and a
numerical solution of the equations of motion is needed.
The …le xadiab1 solves for the coherent dynamics in the absence of spontaneous emission and cavity

losses. This involves solving the ordinary time-dependent Schrödinger equation with a time-dependent
Hamiltonian. The …le xadiab2 solves the problem using direct integration of the master equation in the
situation where losses are important. Due to the adiabatic nature of the process, atomic spontaneous
emission is relatively unimportant, but cavity decay a¤ects the ability to leave the cavity in a number state
at the end of the passage. In xadiab3, the quantum Monte Carlo algorithm is applied while in xadiab4,
the state di¤usion algorithm is used. The reader is encouraged to examine these …les in conjunction with
the original paper and to run them to obtain the results. Typically, a master equation problem requires
a few minutes of computer time for integration on a 266 MHz Pentium II processor.

Quantum Computation Functions
Preliminary support for simulating a quantum computer is provided in the toolbox. A quantum register
is a collection of m 2 state quantum systems, so the ket space is C2

m

: In the toolbox, the two states are
labelled ‘u’ and ‘d’ for up and down, usually corresponding to the bit values 1 and 0 respectively. In order
to generate kets in this space, the function qstate has been written. It takes a string of m characters
consisting of the letters ‘u’ and ‘d’ only (no spaces) and returns the ket in the appropriate Hilbert space.
Thus for example, we may enter

>> qstate(’u’)
ans = Quantum object
Hilbert space dimensions [ 2 ] by [ 1 ]

0
1

>> qstate(’ud’)
ans = Quantum object
Hilbert space dimensions [ 2 2 ] by [ 1 1 ]

0
0
1
0

It is straightforward to take linear combinations of these kets. For instance, one of the Bell states,
may be formed as:
>> uu = qstate(’uu’); dd = qstate(’dd’); bell=(uu+dd)/sqrt(2);

It is often more convenient to display a state in terms of strings rather than as a list of 2m complex
numbers. The function qdisp is available for this purpose. Having de…ned the Bell state above, we can
display it using
>> qdisp(bell)
uu 0.70711
dd 0.70711

The output of qdisp consists of a line for each register content with non-zero amplitude, followed
by the (complex) amplitude of that vector. If desired, the outputs of qdisp may be stored, rather than
displayed. This is illustrated by
>> [s,a]=qdisp(bell)
s =
uu
dd
a =

0.7071
0.7071
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We next consider de…ning operators for quantum gates. A number of gates have been pre-de…ned,
including the square root of not, the controlled not, Fredkin and To¤oli gates. As an example, the code
which generates the Controlled-Not gate is shown
function Q = cnot
% CNOT computes the operator for a controlled-NOT gate
uu = qstate(’uu’); ud = qstate(’ud’); du = qstate(’du’); dd = qstate(’dd’);
Q = dd*dd’ + du*du’ + uu*ud’ + ud*uu’;
The result is a 4£ 4 unitary matrix operating on the space of two quantum bits. The …rst bit is the

control, while the second bit is the target. Thus we …nd
>> cnot
ans = Quantum object
Hilbert space dimensions [ 2 2 ] by [ 2 2 ]

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

We may operate on the Bell state, and display the result using
>> qdisp(cnot*bell)
ud 0.70711
dd 0.70711
Similarly, the functions fredkin, snot and toffoli have been de…ned. It is usually necessary to

apply quantum gates to speci…c bits within a quantum register. For example, if we have a register of …ve
bits, we may wish to apply the controlled not operation using bit 3 as the control bit and bit 1 as the
target bit. The resulting operator is a matrix of size 32 £ 32: In the toolbox, the function qgate forms
the operator on the large space starting from a “template” operator which de…nes the gate. For example,
using the operator cnot, we can form
>> Q = qgate(5,cnot,[3,1]);
>> qdisp(Q*qstate(’uuuuu’))
duuuu 1
In the same way, any other template gate can be de…ned and connected up to the selected bits of

a quantum register. Multiplying together the operators for a succession of operations will give a single
matrix which performs the entire sequence, but it should be noted that the result is often (indeed, in all
useful cases) not sparse, which leads to ine¢cient use of memory. It is thus often preferable to store the
sequence of matrices, rather than their product.

Disclaimer
The software described in this document is still in its testing phase, is provided as-is, and no representation
is made as to its correctness, accuracy or …tness for any purpose. Please send any comments or corrections
to Sze Tan, Physics Department, University of Auckland, Private Bag 92019, New Zealand. My email
address is s.tan@auckland.ac.nz.
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